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Preface

High performance computer communication between users requires significant improvements over
conventional host-to-network interfaces. Current host-to-network interfaces impose excessive pro-
cessing, system bus and interrupt overhead on a host. Current network adapters are either limited
in function, wasting key host resources such as the system bus and the processors, or else intelligent
but too slow because of complex transport protocols and inadequate internal memory architectures.
Conventional transport protocols are difficult and costly to implement in hardware and too slow
without it. With networks moving to the gigabit range, these problems will persist in spite of im-
provements in processor speeds and memory cycle time - unless significant design improvements are
achieved.

We identified three closely related questions that should be addressed in designing a high perfor-
mance host interface. The first key question is how to divide transport protocol processing between
a front-end, which we shall call a network adapter, and the main processor. Adapters with sufficient
intelligence to perform transport protocol processing are costly and the cost has to be balanced
against the savings thus made in main processor cycles, host bus and memory bandwidth. The sec-
ond key question is how much transport-level performance is available with an intelligent adapter.
The third key question is how much, if any, change in conventional transport protocols is necessary
for high performance.

We show that adapters that perform end-to-end checksums, data encryption, and packetization
minimize data movement over the host bus and memory, which are critical host resources. Current
intelligent adapters are slow and require rethinking of its architecture. We studied three different
strategies for increasing the performance of intelligent adapters: pipelined processing, prediction-
based header processing, and optimizing latency for packets with small amounts of data. Pipelined
processing reduces per packet processing by folding the cost of checksumming and data encryption
with that of moving data from the adapter to the network. Prediction-based header processing uses
the hints generated by observing packets received in the near past to reduce packet processing
time. Optimizing latency for packets with small amounts of data depends on recognizing and
expediting these packets through the adapter. We integrated these three strategies in proposing
a Network Adapter Board (NAB) architecture. The NAB architecture is designed to take advantage
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of advances in processor technology. It implements few performance-critical functions in hardware
using a general-purpose processor to handle the remaining functions. A prototype for NAB was
built for the VMP system, a high-performance multiprocessor workstation developed at Stanford
University. The performance for this prototype shows an order of magnitude higher throughput for
large data transfer and almost a third lower latency for small amounts of data transfer.

Three conclusions, supported by our work, stand out. State machines of current transport
protocols do not have to change for high performance. State machines of current transport protocol
do not have to be implemented in hardware for high performance. The only required change is the
streamlining of transport protocols to facilitate techniques such as pipelined processing, predictive

header processing, and optimization of latency for small packets.
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Chapter 1
Introduction

Performance of transport protocols on multi-
megabit data communication networks tends to be
limited by processing overhead at user nodes. For
example, measurements of the V kernel [12] indicate
that network transmission time on the Ethernet ac-
counts for only about 20 percent of the elapsed time
for transport-level communication operations, even
with its highly optimized protocol. Similar perfor-
mance figures have been reported elsewhere [41, 49].
Although processor and memory cycle times keep
improving, with communication networks moving to
gigabit range, we expect the processing to persist
as a bottleneck unless significant improvements in
network adapter and transport protocol designs are
achieved. This research focuses on understanding and
eliminating this processing bottleneck.

In this thesis, the term “host interface” denotes
the hardware and software used at the host and at
the network device to communicate over a packet-
switched network. @ The term “network device”
or “adapter” refers to the subsystem dedicated to
communication-related tasks.

We identify three specific problems with current
designs of host interfaces. The host interface im-
poses excessive overhead in the form of processor cy-
cles, bus bandwidth and host interrupts. The over-
head arises from checksumming, packetization, and
encryption of data performed at transport level. The
memory-intensive processing required by these func-
tions reduces the average instruction execution rate.
This is a more important effect for high-performance
processors, such as MIPS [29], in which memory refer-
ence operations are proportionally much slower than
register-only operations. This processing causes the
data to move at least twice over the system bus —
once from global memory to the processor (or its
cache) and once when the packet is copied to the

network adapter. This increased traffic wastes the
system bus bandwidth, which is a critical resource
in both multiprocessor and uniprocessor machines.
In current host interfaces, the host is interrupted for
each packet received or transmitted. These interrupts
force frequent context switching with the attendant
overheads.! This imposes a high penalty in the multi-
processor system with processor caches, where it may
be necessary to fault code and data into the cache
before responding to the interrupt. In addition, the
context switch may also incur contention overhead
when data associated with the network module is res-
ident in another cache. The problem is further aggra-
vated by the prospect of networks moving to the 100
megabit up to the gigabit range using fiber optics
[24, 28, 44]. For instance, in a file server attached to
1 Gigabit network with the interface interrupting on
every 2 KBytes? packet, the network interrupts every
200 microseconds under load.

An intelligent adapter offers a solution to these
problems. It reduces data movement over the host
bus, saves main processor cycles, and minimizes host

1A network device driver could try to avoid full context
switch for each packet interrupt. Recently, researchers from
DEC’s Systems Research Center at Palo Alto [60] did built
such a driver. In this device driver, a packet is processed by
a low-level interrupt handler and queued for a user but actual
notification and waking up of a user process is delayed till
later. It was reported that although the throughput improved
with such a driver, when the low-level interrupt was extended
to do network or transport level header processing, the driver
became complex and slow.

2Since most current applications use packets which are
equal to or smaller than 2 KBytes, in reality we will continue
to have small size packets even on high-speed networks. More-
over, increasing the size of a packet has many non-obvious
disadvantages, such as increasing latency of users with small
packets, increasing buffers required at switches, gateways, and
host interfaces, and increasing jitter and loss rate in the net-
work. Thus, we should not engineer networks or host interfaces
to work optimally with large size packets.



interrupts. We use the term “intelligent” adapter to
indicate that it implements transport protocol! func-
tions.

The main problem is that current intelligent
adapters offer low throughput and high response
times. The problem motivated us to investigate
techniques for increasing performance of intelligent
adapters. Preliminary measurements indicated that
the primary reason is an inadequate internal mem-
ory architecture. Currently, the data transfers into
and out of the buffer memory reduces the number of
memory cycles available for packet processing. As we
progress to a gigabit range network, this problem will
become even more acute.

Conventional transport protocols are too complex
or awkward for hardware implementation (and too
slow without it). But since the packet processing cost
is concentrated in few routines, hardware implemen-
tation of these routines would substantially increase
performance. For a large packet, the processing cost
incurred in checksumming and encryption dominates
the packet processing since the cost increases in pro-
portion to the size of a packet. Although hard-
ware implementation for these functions would in-
crease performance, conventional transport protocols
are designed with little or no thought given to facil-
itating hardware support or implementations For in-
creasing performance, there is little reason to redesign
state machines for conventional protocols. The state
machine specifies procedures for processing headers,
which typically is a small part of the overall cost of
packet processing. Furthermore, with the predictive
processing technique described in Section 3.2.2, the
cost of header processing remains mostly independent
of the complexity of the state machine.

An additional factor that motivates redesign of net-
work adapter architectures is the problem of a host
being bombarded by packets from one or more other
hosts. The packet arrival rate, especially in a high-
speed network, can exceed the rate at which a host
can process and discard these packets, effectively in-
capacitating the host for useful computation. Ex-
cessive packet traffic can arise either from failures
or malicious host behavior. A well-designed network
adapter acts as a “firewall” between the network and
the host.

1.1 Scope of Thesis

The primary goal of this thesis is to achieve a deeper
understanding of performance issues which would
guide future designs of protocol and host system ar-
chitecture. The scope is best defined by stating the
three closely related questions addressed in this thesis
research.

Question 1:

How much of transport-level protocol processing
should be done at an adapter?
Question 2:

How to increase performance of adapters perform-
ing transport-level functions?
Question 3:

Are changes in conventional transport protocols
necessary for increasing performance?

To address these question concretely, we used a
paradigm that is typical for systems research. First,
we measured the performance of existing systems in
order to ferret out “real” bottlenecks. Based on the
observations thus made, we proposed a solution to
remove these bottlenecks. We designed and partially
implemented a prototype host interface and analyzed
its performance. The experience thus gained in turn
strengthened the answers we provided to these ques-
tions.

1.2 Owur Answers: In Brief

We propose that an adapter perform end-to-end
checksums, encryption/decryption and packet pro-
cessing of intermediate® packets. This choice will
minimize data movement on the host bus, and save
main processor cycles. An additional benefit of hav-
ing onboard intelligence is the protection it offers to a
host against network malfunctions and hostile remote
users.

Three techniques we studied in order to increase
performance of intelligent adapters are the pipelined
processing, prediction of headers, and minimization
of latency for small packets. The pipelined process-
ing of a single packet involves performing checksum-
ming and encryption functions while the packet is
transmitted or received. The pipelined processing
of multiple packets involves header processing of the
ith packet concurrently with the transfer of data for
the 7 — 1th packet from/to host and the transfer of

3 An intermediate packet is one that does not implicitly or
explicitly establish or close a virtual connection.




1.3. OUR FRAMEWORK

the ¢ + 1st packet to/from network. We distinguish
the later as the “concurrent processing” or the “over-
lapped processing” of packets.

Predictions of headers of the expected packets re-
duces packet processing times if the packets are ac-
tually received. We extended the header prediction
technique, first proposed by V. Jacobson [37], for
the request-response model observed in a typical dis-
tributed systems environment. The success rate for
predictions depends on how many predicted headers
are stored and on the locality in network traffic [62].
In current host interfaces, header predictions do not
significantly increase performance [37]. But when the
pipelined processing is used, the header predictions
become more effective due to the overlap between
header processing and data-related operations.

In a typical distributed systems environment,
about 40% packets carry small amounts of data and
are due to occasional packet exchanges between users.
Minimizing latency for such packets is important for
performance of distributed systems. Ideally, the host-
to-adapter interface and packet processing software of
the adapter should recognize and expedite such pack-
ets as a special case.

Based on these principles, we designed an intelli-
gent adapter for the VMP multiprocessor [10], focus-
ing on the architectural issues in the host-to-adapter
interface, the internal architecture of the adapter
board, and the transport protocol. The interface
between adapter and a host is designed for minimal
latency, minimal interrupt processing overhead, and
minimal data transfer on the system bus.

The proposed architecture, called
Network Adapter Board (NAB), encompasses three
distinct areas: adapter hardware, adapter software,
and host-to-adapter interactions. The adapter’s sys-
tem architecture has a novel internal memory and
processing architecture that implements some of the
key performance-critical transport layer functions in
hardware. Its software utilizes locality observed in
network traffic to reduce processing of received pack-
ets. In the NAB, we used a different host-device in-
teraction model to reduce the data movements, and
the waste of host resources.

The architecture is coupled to a new transport pro-
tocol called Versatile Message Transaction Protocol
(VMTP) [6, 9]. VMTP is a request-response trans-
port protocol specifically designed to facilitate imple-
mentation by a high-performance network adapter.
VMTP assumes an underlying network (or inter-

3

network) service providing a datagram packet ser-
vice. VMTP provides a support for multicast data-
gram service, real-time data transfer, and secure data
transfer. The interested reader is referred to an In-
ternet RFC paper [9] for further details.

A prototype of the architecture was designed and
partially implemented. The prototype is a single
board connecting VMP multiprocessor nodes via a

100 MBits/s network link. It is estimated to sustain

the effective throughput of 45 MBits/s for reliable
transfer of 16 KBytes of user data, including the ker-
nel overhead. The same operations on current host
interfaces are done with the effective throughput of
4.2 MBits/s. Based on our finding that the processor
used in the prototype was the bottleneck, we used a
more powerful processor to study how much its per-
formance improves. Rather than build another pro-
totype, we used a simulation of AMD’s Streamlined
Instruction Processor (AMD29000), a RISC proces-
sor with a nominal rating of 17 MIPS, to model the
NAB hardware. Running the NAB Software on this
simulator, we observed effective throughput for 16-
KByte read was about 400 MBits/s. The experiment
assumed that the network link was a gigabit link. In
summary, we found the architecture provides impres-
sive gains compared to current software implementa-
tions.

1.3 Owur Framework

We discuss in this section the trends in technology
development, transport protocol design, and the cost
of hardware development defining the framework for
the thesis.

1.3.1 Processor and Memory Speed

The instruction execution time of general-purpose
processors has continued to decrease more rapidly
than cycle times of main memory. Instruction cy-
cle time of early microprocessors such as 8008 was
roughly equal to cycle time of memories available at
that time. Currently, with the development of RISC
technology, which uses a reduced instruction set in
order to reduce instruction execution time, the cy-
cle times of 100 ns to 20 ns are achievable. During
the same period, memory cycle times have decreased
rather slowly to go from 1-2 ps to 120 ns (for a dy-
namic RAM of moderate size). The gap in demand
and supply of memory bandwidth is particularly se-
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vere if we consider the memory bandwidth used up by
high-speed 1/0 traffic. The future holds no promise
for reducing this gap. Changes in processor designs
are aimed towards lower and lower instruction cycle
times [22, 31], whereas DRAM technology is aimed
towards increasing the size and not the cycle time.
Moreover, although the basic memory cell is becom-
ing smaller and faster due to its redesign, the elec-
trical limitations of a large cell arrays constitutes a
major hurdle to further speed improvement. Drive
and sense circuits for a large number of memory cells
limit the rise and fall times of these pulses and their
width. We expect the memory bandwidth limitation
to become an increasingly significant factor in com-
puter system designs, including the design of network
devices.

Limited memory bandwidth has forced computer
system designers to consider a hierarchical mem-
ory architecture where a cache (which is faster and
smaller than main memory) serves as the interme-
diate store for data and instructions. What makes
caching work well in practice is the observed locality
in memory references of a typical program. It is used
to reduce the effective instruction (and data) fetch
time. Similarly, we can expect the limited memory
bandwidth to change the design of a high speed net-
work adapter.

1.3.2 Simplification of Transport
Protocols '

Light-weight transport protocols [14, 27] have been
typically proposed to accommodate their implemen-
tation in hardware. Advocates of such protocols ar-
gue that simplification would lead to better perfor-
mance at the transport protocol layer. The above
conclusion is not supported by current evidence. On
the contrary, various studies which audit packet pro-
cessing time suggest that simplification is unlikely to
affect performance. In [37], Van Jacobson reports on
packet processing times observed for TCP/IP soft-
ware on Unix running on a SUN workstation. Of the
total 1500 microseconds spent processing a typical
packet, he found that only about 16% of the time was
taken by protocol-specific tasks. The rest was spent
in the operating system and the movement of data.
Another study of TCP software [17] also supports this
observation. [41] shows that even with highly opti-
mized data movement in a stand-alone environment,
no more than 15% of the time is spent in performing

IEEE 802.2 protocol-specific tasks. Hence simplifying
a protocol addresses only a small part of the perfor-
mance problem.

Recent measurement studies also point out another
fact that undermines the simplification philosophy.
As reported in [17, 36], the common case of process-
ing a packet delivered without error requires few in-
structions. The complexity of protocol specifications
is introduced due to exceptions. Processing cost of
these exceptions, which occur infrequently, has little
impact on the average performance of the transport
protocol. Nor can we avoid this processing without
dropping or altering the quality of transport-level ser-
vice. Changes in algorithm of error and flow con-
trol schemes have no impact on the processing cycles
required. For example, go-back-by-N retransmission
scheme and selective retransmission both require an
almost equal number of instructions per packet. The
same is true for processing costs of sliding window
versus rate-based flow control schemes.

We used a conventional transport protocol with
minimum changes necessary for high performance.

1.3.3 General-Purpose or Customized
Hardware

Recent efforts in high performance protocol imple-
mentation fall into two extremes: some use standard
protocols and adapters but improve software imple-
mentations (we will call this a status-quo approach);
the others simplify a protocol to have it implemented
entirely in VLSI (we call this a silicon approach).
The status-quo approach depends on improve-
ments in microprocessor technology and efficient soft-
ware to get better performance. Its advocates cite
adaptability to ever changing standards as the major
strength of the approach. New standards are emerg-
ing at a rapid rate and even well-conceived standards
seem to require a number of subtle modifications be-
fore they become stable. There is one other compar-
ative advantage of this approach. General-purpose
microprocessors receive more attention and more in-
vestment of resources to continue their rapid improve-
ments. This could eventually overtake any short-term
benefits provided by using a custom VLSI.
Advocates of the silicon approach like to point out
that the improvements we can expect from the sta-
tus quo approach are limited. The best long-term
solution, they argue, is to adapt protocols and hard-
ware for efficient processing of packets. They con-
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clude that, since the functions needed are not signif-
icantly different than other types of I/0O traffic, we
should be able to design hardware similar to an I/O
processor and a disk controller.

We propose a middle path between these two ex-
tremes. We believe that a better solution is to de-
sign hardware support for the common and the crit-
ical functions, leaving software to handle exceptions.
This approach is based on our observations that the
complexity of protocol exists mainly in the excep-
tion handling procedures, and that the changes in
protocol specification occur frequently in these pro-
cedures. Typically, the frequently executed portion
of the protocol specification remains stable over the
years. Such key functions can and should be sup-
ported in hardware. We perceive that the real issue
to be finding an appropriate boundary between hard-
ware and software. Our approach integrates advan-
tages of both extreme approaches. It has flexibility
because it executes complex (and infrequent) tasks
in software. It provides hardware support for fast
execution of common functions.

1.4 Outline of Thesis

The first task carried out for this research was to mea-
sure existing implementations of protocols. The re-
sults of this study and its interpretation are recorded
in chapter 2. The study motivated a design of the
host interface for the VMP multiprocessor [10], focus-
ing on the architectural issues in the host to adapter
interface, the adapter board, and the transport pro-
tocol. In chapter 3, we address the question of why
we need intelligent adapters and how they can be
designed for high performance. In chapter 4, we de-
scribe the details of the internal architecture of the
network adapter board and its interface to host. In
chapter 5, we discuss results of performance measure-
ments on the prototype. In this chapter, we also dis-
cuss cost/performance benefits of the pipelined pro-
cessing and onboard intelligence. In chapter 6 we
compare our design to other related works reported
in literature. In chapter 7, we conclude with a sum-
mary and a discussion about future work.

[S1}




‘Chapter 2

Measurements of Current Systems

2.1 Introduction

In this chapter, we discuss results of measurements
of various transport protocol implementations. The
primary goal is to understand how packet process-
ing time is divided among functions performed. The
understanding will point to key issues in designing
network interfaces for high-speed networks. We be-
gin here by outlining methods used to collect data in
this study. Here we also discuss important features
of VMTP transport protocol, used in distributed
systems research at Stanford University. We ob-
served performance of VMTP at user-level for dif-
ferent workstations and operating systems. We also
compared performance of different transport proto-
cols to avoid drawing conclusions from a study of
a specific transport protocol. The observations con-
firm the well-known fact that user-level performance
is lower than the transmission capacity of the network
link. We focus next on measuring the total CPU time
spent processing packets and compare the CPU time
with the transmission time and the total response
time for small and large amounts of data exchange
in VMTP. Results show that CPU time is the ma-
jor component of the total response time. Next we
analyze various components of the CPU time spent
processing a single packet. This is the crux of our
measurement work and it provides valuable insights
on what performance bottlenecks exists. These in-
sights and its impact on the design are discussed in
the final section of the chapter. These insights could
be affected by the idiosyncrasies of an operating sys-
tem. Recognizing this we also cite supporting evi-
dence from results our study [41] of a dedicated and
stand-alone implementation. One useful technique
for increasing performance is to concentrate resources
on executing the common case. Our measurements

show what is the common case in packet processing
and also how frequent it is. We also compared CPU
times of various alternative error control schemes to
support one of the conclusions drawn from this study,
namely, that the complexity of a transport protocol is
not a significant factor in performance. We conclude
the chapter with a summary of conclusions based on
observations of these measurements.

2.2 Measurement
Environment

We have a distributed environment characterized by
over 50 diskless workstations, four file server ma-
chines and a couple of print servers. The network is
a single-segment 10-MB Ethernet connected to other
Ethernets on the campus with bridges and gateways
to Arpanet. Workstations are VAX stations, Sun
3’s and 4’s, few experimental multiprocessor work-
stations from Digital Equipment Corporation and a
dual-cpu VAX 8350. All of the workstations and file
servers run the V distributed operating designed at
Stanford University. Inter-process communicationsin
V is based on a message-based paradigm. The oper-
ating system provides a location-transparent mecha-
nism to communicate with processes on multiple ma-
chines or a local machine. It is organized as a sim-
ple kernel that provides basic message-passing prim-
itives. All of the rest of traditional operating system
functions such as management of memory, I/O de-
vices, and files is provided with various servers. Pri-
mary use of our environment is distributed systems
research. It is used for compiling and editing pro-
grams as well as for daily chores such as reading mail
and news, writing and formatting papers, and playing
games such as multi-user maze-wars or checkers.




2.3. USER-LEVEL PERFORMANCE

Message communications over the network uses
Versatile Message Transport Protocol (VMTP) sup-
porting basic RPC call mechanism and reliable trans-
fers of bulk data. The main advantage that VMTP
has with respect to transport protocols such as TCP
and TP is its excellent fit with the requirements of
distributed applications. The basic model of VMTP,
referred to as request-response model, takes advan-
tage of the observation that in most applications one
expects a response (from the the application-level)
to a request being made. VMTP uses this basic mes-
sage exchange as a basis for providing reliable service.
Other services such as uni-directional data transfer
(datagrams), data transfer to a group of destinations
(multicasts), and bulk data transfer (virtual circuit)
are also implemented with this model. A message in
TCP requires a separate acknowledgment from the
transport layer and a separate response from the ap-
plication. In contrast, VMTP reduces packets re-
quired in reliable data transfer by using a response
to the requested service itself as an acknowledgment
of transport-level packet. Request and response mes-
sages may be large requiring muitiple packets for full
transmission. Sequencing information necessary to
reassemble a message from packets is provided. Pack-
ets formed out of a single message are divided into
groups of 16 packets. Each group is sent out with
an inter-packet gap specified by the sender. The cost
of resource allocations for long-term communications
is reduced by caching state information (required to
prevent duplicates and to retransmit) across multi-
ple transactions. In other words, all other types of
communication patterns are built on top of this basic
transaction model.

VMTP procedures minimize computations and
state information required at the server end. This
helps to keep VMTP implementation at server end
simple and efficient, which allows multiple clients
to use a server without it becoming the bottleneck.
The protocol provides multicast request service to
higher layers. VMTP also provides domain-based ad-
dressing and facilities to handle secure transmissions.
VMTP uses selective retransmission and rate-based
flow control to handle packet losses and congestion
problems. The protocol is completely specified in [9)
and its advantages are discussed in detail in [7, 6, 11].

Two important cases of end-user performance are
response time for small amounts of data and through-
put for bulk data transfers. The response time is the
elapsed time between sending a request message and
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receiving the response message, including the over-
head in the operating system kernel. The throughput
is the effective data rate obtained by dividing user-
level data transferred by the response time observed
by a client. Performance of many distributed applica-
tions depends on the performance of both cases. For
instance, a high-performance distributed file server
would require low response time for messages ex-
changed during opening, closing and locking of a file
as well as high throughput for read and write opera-
tions.

Bimodal distribution of packet sizes has been well-
established [11]. In our network traffic, we found
two distinct peaks of packet sizes, 64 and 1024
bytes. A large number of transactions require a very
small amounts of data to be sent or returned, e.g.,
commands typed to the V executive (typically 1-30
bytes), host or user names (5-20 bytes), and host sta-
tus information (usually 72 bytes). In one study of
network measurements for VMTP traffic [11], it was
found that the ratio of small to large packets is about
3:7. This observations have prompted VMTP (and
the host-NAB interface) to distinguish small pack-
ets from large ones. Small packets are fixed in size
and carry up to 64 bytes of user data. The distinc-
tion helps storage management and packet process-
ing in software implementations. The distinction is
also used in our proposed architecture to optimize
response time.

2.3 User-level Performance

In Figure 2.1, we show the performance observed
with current software implementations of VMTP.
The data is obtained by making the same read (or
write) call 1000 times and averaging over 10 trials.
During these measurements, the background network
traffic was measured to be about 25 packets/second.
The throughput increases as we increase the data seg-
ment size, but it levels off after data segment size of
16 Kbytes, after which it improved no more than 5%.

In Figure 2.2, we compare response time for sin-
gle packet exchange and throughput for 16- Kbytes
through the 10-MB Ethernet with other three other
cases: in-memory copy of data, local message pass-
ing, and transfer time over raw Ethernet. Memory
transfers and local transfers between processes were
measured on a Sun 3/50 workstation running V. The
comparison shows the user gets less than one third,
one tenth and one eleventh of throughput available,




Machine-Pair || Response Time | Throughput Operating System [| Response Time | Throughput
0 Bytes 16 Kbytes 0 Bytes 16 Kbytes
ms Kbits/s ms Mbits/s
VAX-VAX 6.585 2132.7 V (Stanford) 2.93 3.574
VAX-SUN2 6.238 2291.0 Unix 4.3BSD 5.70 2.512
VAX-SUN3 3.988 1586.6
SUN2-SUN2 6.472 1027.4 . )
SUN2-VAX 6.275 2106.6 Figure 2.3: Performance of VMTP under V and Unix
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Figure 2.1: User-level Performance of VMTP on Eth- | VMTP 5.2 2.592 (16)
ernet TCP 6.9 2.256 (2)
SunRPC 9.2 1.880 (8)
UDP 6.4 2.608 (8)
Response Time | Throughput
0 Bytes 16 Kbytes
ms Mbits/s Figure 2.4: Performance of different transport proto-
Data copy 0.038 33.59 cols under Unix
Local send 0.680 29.82
Remote send 2.933 3.57 UDP (a “simple” transport protocol) under Unix on
Network delay 0.062 10 a Sun 3/75 workstation machine. In brackets in sec-

Figure 2.2: Overhead of VMTP as compared to in-
memory data transfer and network transmission time

respectively, for network transfer, local message pass-
ing, and in-memory data copying. The response time
of transport-level transfer is about 47, 4, and 77 times
higher than, respectively, for network transfer, local
message passing, and in-memory data copying. These
measurements were made when background traffic
was less than 25 packets/s. During the measurements
itself, the network load remained less than 12% of
theoretical maximum. This data clearly shows that
packet processing is the most important component
of cost in network communications.

Optimized design of an operating system or trans-
port protocols may yield a factor of 2 improvement in
performance. In Figure 2.3, we show the performance
measured for VMTP under V and VMTP under Unix
(4.3 BSD version) operating systems. Both were per-
formed on the same Sun 3/75 workstation machine.
In V, we get lower response time and high through-
put as compared to Unix. In Figure 2.4, we show the
measured performance of VMTP, TCP, SunRPC, and

ond column we have indicated the user data segment
size for which maximum throughput was observed.
In all of these transfers, the network used was 10-
MB Ethernet, which has the maximum packet size of
1536 bytes of data. We observe that VMTP offers
lowest response time and highest throughput. The
difference separating the performances is less than a
factor of 2 in all cases.

2.4 Packet Processing at
End-nodes

The host processor remains quite busy while send-
ing and receiving messages. In Figures 2.5 and 2.6
, we show, respectively, the host processing power
expended in communications-related tasks for small
and large amounts of data exchange. The host ma-
chines were two Sun 3/50 workstations running V.
For bulk data, each experiment consisted of 1000
calls for reading of 16 Kbytes. The measured total
times were divided by 1000 to obtain per message
time. The figures show the result of averaging over
10 such experiments. Similar set of experiments were
conducted to obtain data for exchange of one packet




2.5.
16 Kbyte Client Server
Data Transfer || Time (ms) | Time (ms)
CPU 23.671 22.783
Elapsed 36.738 36.738
Ethernet 14.168 14.168

Figure 2.5: Measured CPU and transmission times
for 16 Kbyte write operation in VMTP under V

0 Kbyte Client Server
Data Transfer || Time (ms) | (ms)
CPU 1.804 1.775
Elapsed 2.933 2.933
Ethernet 0.125 0.125

Figure 2.6: Measured CPU and transmission times
for write operation with no data

request-response transaction requesting null service.
The transmission time on Ethernet is measured with
an oscilloscope connected at the network-end of the
client. For bulk data transfer, about 64% of the
elapsed time consists of time used for packet process-
ing. A slightly lower percentage (61%) is seen for
the case of simple transactions. We also observe that
packet processing time in both cases is almost equal
at client and server. Only about 38% of the elapsed
time is Ethernet transmission, confirming again that
packet processing is the bottleneck. Note that since
packet transmission overlaps with packet processing,
addition of first two rows does not give the third one,
the total elapsed time.

In Figures 2.7 and 2.8, we have compared the CPU
cost to the moving of equivalent amounts of data in
memory by CPU, and making the same call to a local
process. Data has to be moved at least once during
message passing to local or to a remote process. Thus,
the cost of moving data is included in the later two
costs. The comparison of costs suggests that most
of the packet processing cost is the processing by the
host. The relative cost of various functions performed
for network transfer is analyzed in the next section.
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CPU Time Client | Server
for Transfer ms ms
of 16 Kbytes

In-memory data copy || 3.902 | 3.902
Local VMTP send 4.395 | 4.314
Remote VMTP send 23.671 | 22.783

Figure 2.7: A comparison of processing costs for lo-
cal and remote send with in-memory copy: 16 Kbyte
data

CPU Time Client | Server
Measured ms ms
for 0 Kbyte

In-memory data copy || 0.038 | 0.038
Local VMTP send 0.680 | 0.680
Remote VMTP send 1.804 | 1.775

Figure 2.8: A comparison of processing costs for local
and remote send with in-memory copy: No data

2.5 Internal Audit of Packet
Processing Cost

Protocol-related processing is a minor part of the to-
tal processing time of a packet. This fact in revealed
in any internal audit of packet processing. Figure 2.9
shows relative cost of various functions executed for
VMTP implementation on a Sun 3/75 workstation.
The costs were calculated by counting instructions
executed in processing an error-free transmission of
a packet. The Ethernet time is calculated using an
oscilloscope attached to the network end of a client
workstation. Only 7% is unaccounted when the total
estimated time is compared with the measured per
packet processing time.

In this figure, we observe that the time for process-
ing VMTP and IP headers is less than 12% of the
total time. The most significant part of the cost is
the operating system overhead in processing a packet.
This overhead consists of buffer management, inter-
rupt processing, waking up the destination process,
and device driver. The rest is divided equally be-
tween checksumming, moving of data from user to
kernel space, and DMA time by the network device.

Relative costs remain constant for different oper-
ating systems. Figures 2.10-2.12 show results of the
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Components Processing Time
Data Movement 40 %
Kernel 25 %
Ethernet Driver 15 %
VMTP 8 %
Checksum 10 %

Figure 2.9: Relative costs in processing a VMTP
packet under V running on a Sun 3/50 workstation
while performing 16 Kbyte Writes

study of packet processing costs for VMTP on Unix.
In Figure 2.10, we show relative costs of various func-
tions executed in performing RPC call for a client
machine, Sun 3/50 (column 1) and sun 3/160 (col-
umn 2). The measurements are collected using the
profile measurement tool available on Unix. The ex-
periment sent 100,000 RPC calls over a relatively
unloaded! network. In Figure 2.11, we show rela-
tive costs under a similar experimental set-up for a
Sun 3/75 and Sun 3/150 servers. In Figure 2.12, we
show processing times measured for 100,000 transac-
tions of 16 Kbytes read call using VMTP on Unix.
We observe in these three figures that the major part
of time spent in protocol-related functions and rela-
tively large time spent is again due to the operating
system overhead. Another study, performed by Van
Jacobson of Lawrence Berkeley Laboratory [36], also
confirms these conclusions for TCP/IP processing on
a Sun 3 workstation running Unix (4.3 BSD Version).
The relative costs reported in that study ate shown
in Figure 2.13.

2.6 Stand-alone Systems

Packet processing costs are divided into somewhat
different components in a stand-alone system such
as a network adapter. Such systems have a simple
operating system which reduces its effect on packet
processing rates. To study this, we measured the per-
formance of an implementation of IEEE Std. 802.2
Logical Link Control protocol [56], which was chosen
as a specific example to study because of our interest
in a local network. It provides two types of services:
reliable virtual connections and datagrams.

1 Background packet traffic was not reported in the study
[48], from where these measurements are quoted.

Read Operation || Sun3/50 | Sun3/160
(0 Bytes)

System call 5% 4.6% (16)
Socket interface 6.4% 6.0%
VMTP 26.1% 22.9%
Sleep, Wakeup 7.6% 5.1%
IP time 9.8% 9.4%
Software int 1.9% 1.8%
Others 3.3% 2.1%
Unaccounted 3.0% 0.5%
Total 99.1% 98.1%

Figure 2.10: Components of client-side processing for
small data exchange in a VMTP implementation on
Unix

Read Operation || Sun3/50 | Sun3/160
(0 Bytes)

System call 9.0% 8.7% (16)
Socket interface 14.0% 13.9%
VMTP 25.0% 23.6%
Sleep, Wakeup 4.1% 4.5%
IP time 7.4% 6.6%
Software int 1.3% 0.5%
Others 2.1% 2.2%
Unaccounted 2.7% 0.7%
Total 98.5% 98.6%

Figure 2.11: Components of server-side processing for
small data exchange in a VMTP implementation on
Unix

Part Sun3/50 | Sun3/160
Client Server
ByteCopy 24.5% 14.61%
Checksum 13.59% 9.03%
Data buffer manipulation || 6.38% 7.65%
VMTP 12.61% 13.22%
IP time 11.11% 5.22%
IPL 9.68% 9.46%
Software int 3.45% 0.18%
Others 1.5% 3.29%
Total 95.25% 95.14%

Figure 2.12: Components of packet processing for a
16-Kbyte read in a VMTP implementation on Unix
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Part VAX
User-kernel move 13%
Checksum 12%
Device DMA 20%
TCP/IP 16%
Others 30%
Unaccounted 8%
Total 1525 ms

Figure 2.13: Components of packet processing for
large data transfers in a TCP/IP implementation on
Unix

The measurement environment consists of an im-
plementation of LLC for a single station where service
access points are connected to a message source/sink
and where the network is emulated in software and
is assumed to be of infinite capacity. Performance
measurements for virtual connection traffic are made
on an active loop-back connection open between two
service access points of the station; similarly, the
measurements for datagram traffic are made on data-
grams transmitted between two service access points
of the station. In these measurements, a message is
always waiting to be transmitted and receive buffers
are always available; thus, the LLC program is al-
ways either sending or receiving a message. Pack-
ets are transmitted (and received back at the node)
without any delay or transmission errors. The envi-
ronment described above, thus, appropriately focuses
the attention on the internal processing done within
the LLC protocol.

The program implementing the protocol is writ-
ten in C, and can run on a network interface us-
ing a general-purpose microprocessor. Since the pro-
gram allocates its own resources and schedules var-
ious asynchronous activities, it can run without the
support of a general-purpose operating system. How-
ever, to facilitate measurements in this study, we
ran it on a VAX 11/780 processor under UNIX (a
general-purpose operating system) and used the pro-
gram monitoring tools available on UNIX, namely
GPROF and MONITOR. An execution time profile
generated using these tools consists of absolute and
relative execution times of functions called during the
execution of a program.

The program consists primarily of four major
modules: GETCOMMAND, SEND, RECEIVE, and
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GIVERESPONSE. These modules are called in a
round-robin order by a scheduler named ROBIN.
GETCOMMAND processes commands received from
a higher layer. Among the commands processed are
commands to open and close virtual circuits, and
commands to send and receive data. When a data
message is to be sent on the network, GETCOM-
MAND packetizes the message and the packets thus
formed are queued in a transmit queue reserved for
the circuit to which the data message belongs. SEND
polls each virtual circuit in a round-robin order, and
transmits the waiting packets with the appropriate
headers. The transmission of a packet is effected, in
this case, by handing it over to the network emula-
tor. RECEIVE processes each packet received from
the network according to its type, the state of the vir-
tual connection, and the state of the destination SAP.
If the received packet contains data, RECEIVE lo-
cates a message buffer, copies the data into the buffer,
sends an acknowledgment packet, and forwards the
filled message buffer to a higher layer protocol task.
GIVERESPONSE dispatches responses for the com-
mands received to the appropriate higher layer entity.
Datagram traffic is handled in a way similar to above
with the exception that, RECEIVE does not gener-
ate an acknowledgment packet for a packet received
as a datagram.

The three functions that deserve special mention
are the ones which together take up a large fraction of
the total processing time. One of these is BMOVE, a
function for block movement of data within the mem-
ory. BMOVE is called every time a message buffer is
packetized, and the data from a received packet is de-
packetized to form a message. For the environment
described above, this is the function required to copy
data in and out of the network interface, since typi-
cally a user message exists in the memory of a host
and packet buffers are located in a network inter-
face. The other two functions, ENQUEUE and DE-
QUEUE, are primitives for accessing queues. These
three are simple functions which require no more than
four or five source statements (in C language). The
remaining functions are not described here, as their
names suggest the tasks being performed.

Preliminary results showed that BMOVE takes up
a large fraction of the total execution time. This
led to the development of three distinct versions of
the program, all of which differ by the way the block
movement of data is done. In the original program,
referred to as Program A, BMOVE was coded as a
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single statement in C language. For this program,
it was observed that of the total program execution
time for sending a 1500 byte long message on a virtual
connection, more than 90% was spent in BMOVE.
This observation led us to develop two improved ver-
sions of the original program. In one version of the
program, referred to as Program B, the function is
made more efficient by utilizing a block movement in-
struction available on the VAX machine. In the other
version of the original program, referred to as Pro-
gram C, BMOVE sets up a DMA channel to transfer
data, but the function itself does not move any data.
The assumption made in this version is that the hard-
ware architecture for the network interface includes
DMA channels, and the latter are able to transfer
data to/from a packet as fast as it takes the proces-
sor to process a packet. In the following, we discuss
the results of measurements of these three programs
for virtual connection traffic traffic.

The first set of experiments constituted moving a
number of data messages, (specifically 1000), over
a loop-back connection. The size of a data mes-
sage was arbitrarily chosen as 1500 bytes, and this
was also selected as the maximum size of data in a
packet.? The difference in performance amongst the
three programs is shown in Figure 2.14, which con-
tains the total program execution time and the rel-
ative execution time of BMOVE for sending a single
message over the connection. The effective end-to-
end throughput is calculated over the time taken to
transmit 1000 messages. The end-to-end throughput
for program A is 375 KBPS, which is comparable to
that observed with other commercially available LAN
interfaces. The end-to-end throughput for Program
B and for Program C is 7 times and 15 times bet-
ter than that of Program A, respectively. We note
here that since the same processor is used to send
and to receive data in a loop-back connection, the
end-to-end throughput for a loop-back connection is
half that available for a connection whose end-points
are on different processors.

The execution time profile of Program A is un-
interesting because only one function dominates the
program execution time. Figure 2.15 shows the exe-
cution time profiles per message for Programs B and
C. In Program B, BMOVE takes up 41% of the total
execution time; whereas, in Program C, it takes only
10%. The execution profile of Program C also shows

2 The maximum size of a packet for 10 MBPS Ethernet is
1536 bytes.

Total
Program Execution Time
Execution of
Time (ms) | Bmove Function (%)
Program A 32.15 91
Program B 4.56 40
Program C 2.19 10

Figure 2.14: Relative execution times of block move-
ment of data

that the queue management functions, namely EN-
QUEUE and DEQUEUE, now constitute the major
fraction (about 40%) of the total execution time.

A major observation that can be made from the re-
sults obtained pertains to the design of the adapter’s
system architecture. In general, the processing of
packets can be separated in two parts; processing of
a packet header, which we call packet-level process-
ing, and processing of each data byte, which we call
byte-level processing. The checking for the correct
sequencing of packets is an example of packet-level
processing; whereas, the copying of data in a packet,
i.e., packetization, is an example of byte-level pro-
cessing. Other examples of byte-level processing are
error detection and correction, bit-order or byte-order
reversals, and encryption and decryption. In Pro-
gram C, the packetization and the depacketization
functions are separated from the packet-level process-
ing and are performed concurrently in hardware. In
general, the separation of packet-level and byte-level
functions is advantageous because one is able to de-
sign systems which handle both of these functions
concurrently and with matching speeds. Moreover,
the byte-level processing is generally simpler and re-
peated more often; thus, it is cost-effective to design
fast hardware specifically to perform byte-level pro-
cessing.

2.7 The Common Case

In our design, we concentrated hardware and soft-
ware resources available for efficient execution of the
common case in packet processing. To determine the
common case in our environment, we measured the
frequency of occurrence for packet loss, retransmis-
sion and out-of-sequence receipt of packets. To mea-
sure these parameters, we recorded network traffic
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Figure 2.15: Profiles of the program execution time
of sending a data message (1500 bytes) on an already
open virtual circuit using a) Program B, and b) Pro-
gram C.

at two separate workstations for over a period of 72
hours. On a Sun 3/50 workstation, we observed over
a million packets. Of these, less than 0.05% were
received with wrong CRC or with packet overrun in-
dications. At a VAXstation II, we observed about
820,000 packets of which roughly 0.1% were received
in error. The VAXstation II is roughly 3 times slower
than the other workstations studied, which perhaps
accounts for the slight increase in packets received
with error. We also found that packet retransmission
occurs with less than 6% of the total packets trans-
mitted, and very few of them are retransmitted more
than once. Less than 2% of the multi-packet transac-
tions resulted in out-of-order packets. Moreover, we
found that when a packet retransmission occur, it is
more often due to delayed response rather than a lost
packet.

These observations suggests that in a typical LAN
environment the common case is a valid packet re-
ceived in right sequence without a transmission er-
ror. It is instructive to see how the processing time
is divided among functions performed for the com-
mon case. To do this, we traced the code written for
VMTP under V and counted instructions executed
for the common case. The VMTP header processing
for the common case takes approximately 40 instruc-
tions. The total instructions needed for transmission
of a maximum size packet are 1200 instructions for
the first packet of a packet group and 850 instruc-
tions for the subsequent packets. The data move-
ment and checksumming functions require about 14
instructions per data word. The surprising result of
this measurement is to realize how few instructions
executed per packet depend on the state machine of
VMTP protocol.

2.8 Complexity of Transport
Protocols

Complexity of state machines of conventional trans-
port protocols does not contribute much to the cost of
packet processing. This fact, supported by measure-
ments, implies that simplification of state machines
is not the most rewarding approach for increasing
transport-level performance. In case of VMTP, as
observed in the previous section, header processing
takes less than 40 machine instructions out of 850-
1200 instructions per packet. A similar observation
was made for TCP, a standard transport protocol, by
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Error-Control Processing Time
Algorithm Per Packet (us)
Selective Retransmission 56
Sliding Window (TCP) 40
Go-back-N 45

Figure 2.16: Processing times for alternative algo-
rithms for error and flow controls

David Clark [17] and Van Jacobsen [37]. Both studies
show that fewer than 50 instructions are necessary to
process a TCP packet header.

Further evidence arguing against simplification of
a state machine is also presented by the compari-
son of the performance of UDP with that of TCP or
VMTP, shown in 2.4 for their implementations un-
der the Unix operating system. Although UDP is a
“simple” transport protocol - does not provide reli-
able transfer of data - its performance is not signif-
icantly higher than complex protocols such as TCP
or VMTP.

Would we significantly change the makeup of the
packet processing cost by using different mechanisms
for transport-level error control and flow control?
The answer is no as evident by the comparison of
computational requirements of various algorithms im-
plementing transport-level error and flow control pol-
icy. In Figure 2.16, we show the computational re-
quirements per packet for selective retransmission,
Sliding-window, and Go-back-N policies. These were
calculated from the best published code for each of
these mechanisms executed on a Sun 3/50 worksta-
tion. Note that these should not be incorrectly in-
terpreted to mean that throughput observed in each
case is identical. The throughput observed depends
on the environmental factors such as probability of
lost packets, signal propagation time, and network
latency.

2.9 Results

Measurements shown in this chapter support the fol-
lowing conclusions.

e Minimizing the cost of checksumming, encryp-
tion and copying of data would significantly in-
crease throughput for large data transfers.

In a typical implementation, the time required
to execute these operations is roughly 50% of
the total processing time required per packet.
Hence, reducing this cost should significantly in-
crease performance.

Stmplification of state machines of conventional
protocols is not required for increasing transport-
level performance.

State machines of conventional protocols specify
how to process a packet header. The typical cost
of header processing was measured here to be less
than 10%-15% percent of the cost of packet pro-
cessing. Although simplification may bring down
the cost of header processing, it will not signifi-
cantly increase performance, until the other costs
in packet processing are reduced first. One of
the other important cost to reduce is the cost
of data-related operations, as mentioned above.
The other important cost to reduce is the pro-
cessing overhead in a device driver and in a op-
erating system.

Currently, the performance available to a user is
limited by a host interface.

Increasing speed of networks from current 10
Mbits/sec to a gigabit/sec range does not
promise to increase user-level performance, un-
less host interfaces also improve. For a packet
of the maximum size allowed by Ethernet, we
measured that the packet transmission time is
negligible as compared to current packet pro-
cessing times at end-nodes. Increasing the maxi-
mum size of a packet, which would be feasible in
high speed networks, does not affect the validity
of this assertion. As one increases packet size,
so does one increase the packet processing time,
which includes overheads such as checksum and
data copying. Indeed, we find that the increase
is proportionately much larger in the packet pro-
cessing time as compared to that in the packet
transmission time.




Chapter 3

Host Interface Architecture: Key

Principles

3.1 Introduction

In this chapter, we address the central question of
how much intelligence should an adapter have. Most
current adapters have no onboard intelligence to
perform transport-level functions. We term these
adapters as “dumb adapters”. We use the term “in-
telligent” adapter for those that perform at least some
transport-level functions. In the published litera-
ture, we find proposals for intelligent adapters rang-
ing from hardware implementation of an entire proto-
col [13, 32, 46] to those that provide hardware support
to few critical functions [15, 30, 39, 42, 51]. None have
addressed the question of how much onboard intelli-
gence is necessary or sufficient for high performance.

3.2 Onboard Intelligence

We argue that the adapter should perform transport-
level function such as

o Transport-level checksurnming
e Encryption and decryption
o Header processing for intermediate packets

This choice, as we show below, minimizes data move-
ment over the host bus and memory and reduces per
packet processing time. An additional benefit of hav-
ing onboard intelligence is that one can protect host
against network malfunctions. These issues are dis-
cussed next.

Minimization of Data
Movement

3.2.1

Ideally, the network-bound data should be trans-
ferred just once on the host bus. Currently, addi-
tional movement of data is required due to check-
summing, encryption and copying of data involved in
forming packets. Checksumming requires that each
word be read once; encryption (and decryption) re-
quires that each word be read and written once. Per-
forming these functions by a host processor implies
that each data word be moved at least twice over the
host bus; read (and process) a data word and trans-
fer it to a network device. An additional bus transfer
per data word is necessary whenever the host either
uses the DMA mode for transferring data to a net-
work device or accesses network-bound data through
a cache that uses a write-through mechanism. This
situation is illustrated in Figure 3.1 (a). Additional
use of bus capacity is for moving instructions for pro-
cessing packets. The overhead of instruction move-
ment is minimized by using a processor cache, but
caches presents another set of problems in handling
network traffic. Network-bound data increases traf-
fic through a cache and also causes cache pollution,
since network-bound data is fetched and used only
once. Cache pollution results in increasing cache miss
ratios and thus again decreasing performance.!

1In order to quantify the effect of cache pollution on cache
misses, we ran an experiment on a multiprocessor system with
per-processor caches. In one experiment, we observed a 6%
decrease in the number of cache misses with a modified driver
(and cache management software) that used only fixed memory
locations to transfer network-bound data. The application ran
was formatting of a 30-page document, using “latex” package
and the system was cold-started and loaded with same number
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Figure 3.1: Data Movement with (a) a dumb adapter
and (b) an intelligent adapter

The best solution for minimal data movement is
to use adapter to perform checksumming, encryption
and packetizing. In this case, shown in Figure 3.1
(b), each data word moves exactly once over the host
bus. Additional benefits are that the cache traffic is
reduced and the cache pollution is avoided. Network-
bound data and code for packet processing bypass
processor and its cache.

The second-best solution would be to use a
software-controlled cache [10]. This type of a cache
can be programmed to minimize pollution of cache by
network-bound data. One avoids cluttering a cache
by reusing the same cache locations to read in the
network bound data. Furthermore, the data may be
directly copied into the device memory, eliminating
a bus transfer. An alternative scheme is to allow
network device to read data directly from a cache

of applications in the same sequence in each case.

memory. For this alternative to work optimally, one
also should ensure that cache does not automatically
write-out dirty pages to main memory. Although
both schemes minimize memory references per data
word and avoid cache pollution, these still require 2
bus transfers per data word.

Current interfaces copy data between user’s and
kernel’s address space and sometimes within the ker-
nel’s address space. Consider an example of a dis-
tributed file server recently implemented by Garret
[60]. The typical path of data movement in a read
operation for the file server are illustrated In Fig-
ure 3.2, we show how often data moves within the
system in order to perform a single read operation
for this file server. The example shows that data
is copied seven times before becoming available at
the destination. The first copy occurs when data
is moved from user address space to kernel address
space. Then, it is moved to form a packet, break-
ing up the message if necessary. Finally, the packet
buffer is copied to adapter memory. A similar set of
operations are made at the receiving end. In some
systems, copying of data between users’ and kernel’s
address space may be avoided by remapping physical
pages containing data to a different virtual address
space. But, this operation of remapping of pages-is
costly enough in most systems to motivate design-
ing adapters that avoid physical or virtual copying of
data.

Copying data can be avoided by using intelligent
adapters in the following way. The scheme is ele-
gant and simple. The operating system of a host
reserves buffer space in a user’s address space and
passes along buffer pointer(s) to the adapter. The
adapter will use these pointers to form packets, and
to transfer data directly to these buffers, thus avoid-
ing data transfers through the kernel. This model of
interactions is termed here as the “buffer passing and
reservation” model. In this scheme the device and
the host interacts only once per message transmitted
or received. At the sender, the message, which may
be in non-contiguous physical pages mapped into the
user’s virtual address space, is locked by the operat-
ing system, and the page pointers are passed to the
device along with the information necessary to form
packets out of it. At the receiver, the destination pro-
cess reserves buffer space, which is locked in by the
operating system, and their pointers are provided to
the adapter along with filtering information necessary
to identify packets received for this destination pro-
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Figure 3.2: Data copieé in a typical distributed file
system

cess. We refer to this model as the buffer passing and
reservation model for host-adapter interactions. The
details of messages sent and responses received across
this interface are described in the next chapter.

This model avoids a need to make either virtual
or physical copy of data from user to kernel space
and vice versa. Only one copy of data is made in
this model, which is needed anyway to transfer data
to/from network. A distributed file server built with
this interface is shown in Figure 3.3.

A technique called Scatter-Gather DMA (SG-
DMA) technique is often used to minimize data move-
ment. The technique most easily implemented at
a sender. At a sender, one can form packet head-
ers in kernel space and program the SG-DMA de-
vice so as to link it with the data contained in the
user space to form a complete packet. This is the
gather part of SG-DMA which does eliminate a copy
of data from user to kernel memory space. The prob-
lem is at a receiver, which implements the scatter
part. The scattering refers to the mechanism whereby
received packets are split into header and data parts
that are stored separately in the host memory. With-
out doing any transport-level processing, the adapter
at this point is unable to directly move the data part
to its ultimate destination, thus failing to eliminate
kernel to user data move. A statistical technique
such as optimistic prediction of host memory loca-

17

Kemel !® @\ Kol
me /@ .==.|m

Figure 3.3: Data copies in a distributed file system
using the NAB

tion, as proposed by Carter and Zwaenepoel [4], suc-
ceeds in avoiding user-kernel move typically 50% of
the time. When the prediction fails, one requires ad-
ditional processing and data movement to correct the
mistake.

Additional optimization is feasible for network ex-
changes involving small amounts of data such as mak-
ing a remote procedure call. The reason is that, typi-
cally, such data is recently referenced and hence is in
cache prior to its being sent on the network. Thus,
to pass a pointer as is done for large amounts of data
would require that the data in cache be first written
back to the main memory. Moreover, the adapter
spends additional time getting data and processing
to form the packet. This additional time is all the
more significant as latency is the important measure
of performance for this type of data transfer. Since
such exchanges are frequent in a fully distributed op-
erating environment, it is an important optimization
to make.

The procedure is simple. Either a user or the oper-
ating system may flag transfers involving only few
words. When that occurs, the host includes data
along with the other control information necessary
to form a packet. The data and control information
is arranged in the same format as a packet, thus the
adapter needs to do no more work to send it out on
the network. The procedure reduces latency by avoid-
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ing explicit write-back for cache data and by simpli-
fying the processing of such packets at the adapter.

3.2.2 Reduction of Packet Processing
Time

Current intelligent adapters such as [18, 23] exe-
cute transport protocols with lower performance com-
pared that available with a dumb adapter. This was
offered as one of the main arguments against using
onboard intelligence. Our investigations suggest that
intelligent adapter can do much better by success-
fully utilizing three general techniques for reducing
packet processing time. The first technique is to over-
lap the header processing of a packet with the next
packet’s transfer to host and network. Since current
memory and bus architectures of adapter limit im-
provements brought by the overlapping, we propose
here a novel memory and bus architecture that make
the overlapping more effective. The second technique
is to use the pipelined processing for a packet. The
third technique to use is header prediction reducing

protocol-specific processing of packet headers. We

discuss these techniques in this section.

Adapter’s Memory and Bus Architecture

Currently, concurrent activities such as processing of
packets with the reception and transmission of pack-
ets, and data transfers from the host slow down the
packet processing at the adapter. The bottleneck is
the adapter’s memory and bus. The adapter mem-
ory is used for everything: as a staging area for
network-bound data, as a transient storage for re-
ceived packets and for programs used to process pack-
ets. Thus, the total memory references made to the
adapter’s memory are comparatively larger than ei-
ther those made to main memory or host processor
caches. Thus, the conventional memory architectures
used in current adapters leads to low performance.
Moreover, the future generation of fast microproces-
sors with 10-100 ns instruction cycle times [29] will re-
quire a high memory bandwidth to run at full speed.
Thus, bus cycles used in arbitration and data transfer
will further slow the effective rate of packet process-
ing.

To solve the problem, one should design high-speed
memory architectures. We proposed a mnovel, cost-
effective architecture based on Video-RAM compo-
nents [39]. The basic component, i.e. VRAM IC, has
two independent access ports, one is connected to a

randomly-accessed memory cell array and the other
is connected to a serially-accessed, large shift regis-
ter [47]. A wide data path connects these memories.
Transfer of data between them takes place in a single
access cycle. With this we have provided an archi-
tecture where data movement happens independent
of packet processing. An entire packet received or
data transferred from host memory is accumulated
in the serial memory before being transferred to the
random-access memory for transport-level processing
by the adapter’s processor. With such an architec-
ture, we are able to eliminate bus interference? be-
tween data transfers through the adapter and pro-
cessing done at the adapter. Data transfer rates are
higher than that obtained with regular memory com-
ponents since serial memory is faster. The higher
speed is a result of the fact that serial memory on-
chip has lower complexity than the memory cell array
of DRAMs. In commercially available VRAM parts,
the serial port has at least 5 times faster transfer rates
than either its random port or DRAMs using a com-
parable process technology. For the parts we have
used in our prototype, with 32-bit wide memory, we
achieved a transfer rate as high as 800 Mbits/s.

The data transfer on the host bus can also be made
efficient by using block transfer bus protocols offered
by bus standards such as VMEbus, MultibusII, and
Futurebus [3, 26, 33]. These protocols transfer data
at a higher rate because no address set-up is needed
except at the beginning of a block transfer. A typical
DMA device transfer requires address set-up for ev-
ery data word transferred, which limits the transfer
rate for a block transfer of data. For instance, for
a VME bus, peak transfer rate of 320 Mbits/s and
average transfer rate of 220 Mbits/s are feasible as
compared to a maximum 40 Mbits/s available for a
normal DMA transfer.

Pipelined Processing

In conventional transport protocols, there is little
parallelism of the type that allows one to use par-
allel processing to reduce per packet processing time
[41]. On the other hand, the pipelining, a form of
parallelism, seems natural for this purpose. For ex-
ample, consider an architecture where functions such
as checksumming and encryption are performed on
data as packets are being pulled out of memory or

2 Each data block transferred requires only two memory
cycles per packet transferred, an overhead of less than 1% for
a minimum size of packet transferred.
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put into memory at the network end. Each data word
passes through the pipeline stages that perform sim-
ple operations such as addition and rotation as de-
fined by checksumming and encryption algor_ithms.3
These stages could be implemented with hard-wired
controls and performed at the same rate as the net-
work up to the gigabit range. Let us define the depth
of this pipeline as the time needed to pass a single
word through it. The latency for small data ex-
changes is kept low by minimizing storage of data
within the pipeline, i.e., reducing its depth. In gen-
eral, the pipeline needs no more storage than what
is required for executing checksumming and encryp-
tion functions. It never stores an entire packet. We
designed and implemented this pipeline as a part of
the intelligent adapter [39]. The prototype required
no more than 10 words; thus, its depth is less than
10% of the total transmission time of the minimum
size VMTP packet.

The main advantage of the pipeline is that it re-
duces memory references made to the adapter mem-
ory. The references required for instruction and data
fetching to perform checksumming and encryption
are eliminated. This cost is folded with the cost of
moving data in and out of adapter memory to and
from the network link. Because of reduced mem-
ory references and the shallow depth of pipeline, per
packet processing time is also smaller than the case
where the pipeline is not used.

Header Predictions

The one remaining part of the packet processing that
we have not yet considered is protocol-specific pro-
cessing of packet headers. In this section, we will dis-
cuss header processing algorithms based on header
prediction techniques. The algorithms offer consider-
able improvement over the ones in current use.

At the sender, we can reduce processing time by
noticing that subsequent packets formed out of a
message have similar headers. By reusing the same
packet buffer and making appropriate changes in the
header portion, one will minimize processing required
to form subsequent packets in a packet group.

At the receiver, the processing time is reduced by
using prediction techniques that exploit the observed

3 Strictly speaking, one also needs hardware to determine
when to start and stop checksumming or encryption, since only
transport-level packet is checksummed or encrypted. Since
VMTP packets have fixed header and length fields, hardware
implementation of this part is easy.
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locality of network traffic. A definition of the princi-
ple of network locality is that the packet received next
is frequently related to the one received last, i.e., what
happened in the past is frequently a good indicator of
the near future. This observation has been made by a
number of studies [4, 25, 36, 38, 45, 62]. The factors
that increase locality are decompositions of long mes-
sages into packets with similar headers, transmissions
of multiple packets in a single access to the network,
and generally low utilization of networks. The fac-
tors that decrease locality are multiplexing of traffic
from other local processes or simultaneous demands
by multiple clients to a single server.

One or more packet headers can be predicted and
stored at a receiver to be used as a hint for process-
ing a packet. A general outline of the algorithm is as
follows. An incoming packet is compared to a stack
of predicted packet headers. If a match occurs, lit-
tle further processing is necessary, since the matching
verifies that the packet is correct and also retrieves an
index to the connection’s control information includ-
ing the host memory location to which data goes.
The index and the predicted host memory address
are stored in the stack. The stack is kept in the or-
der of last accessed (or recently formed) header. The
matching uses a simple linear search beginning with
the last used (or formed) header. Replacement uses
least recently used strategy. The hit results in about
1/4 of the packet processing time required otherwise.
Thus, if prediction always succeeded we would have
a speed-up of 4 times in packet processing rate.

The actual speed-up would depend on how often
the prediction succeeds. To study this issue, we col-
lected a number of traces of VMTP traffic on our
10-MB Ethernet. A packet trace is collected with an
modified kernel that saves in memory all the key fields
of packets received by the host. We collected traces
for a workstation and a file server, both Sun 3/75 ma-
chines. At the time of collection, there were at least
20 machines intermittently accessing a file server ma-
chine. and the workstation under study was being
used to compile the V kernel, to run a text formatter
program on a long paper, and to read my mail and to
edit a small file, each running in a different window.
Typical length of each trace is about half an hour
long, collecting exactly 15,000 VMTP packets per
trace. During this time, most of the programs started
at a client workstation completed. Since the temporal
information, i.e. inter-packet arrival times, is not im-
portant in this study, we do not expect the results to
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Figure 3.4: Locality of network traffic observed at a
workstation

be affected by the modifications made for statistics
collection, which slightly increased per packet pro-
cessing time.

We define the hit ratio as the number of times
match occurs divided by packets received. The cache
size is defined as the number of predicted headers
stored. In Figures 3.4 and 3.5, the hit ratio for three
different prediction algorithms is shown as it varies
with the cache size. The first algorithm based its
predictions on all received packets. The second one
based its predictions from the packets containing full
data size. The third one based its prediction on the
packets with full data size plus response packet head-
ers derived by observing outgoing request packets.
We refer to these three algorithms as naive, data-
based, and response prediction algorithms, respec-
tively. Figure 3.4 and 3.5 show results from traces
collected on a client workstation and a fileserver node,
respectively.

The hit ratio increases asymptotically with the in-
crease in stack size. The asymptotic value is reached
for stack sizes 5-6 for a client workstation. Our col-
lected data shows (not plotted in these figures) that
to reach 98% percent hit ratio requires a rather large
cache size (125). Since the cost of matching algo-
rithm, for success as well as failure, increases linearly
with the stack size, the stack size has to be limited
to a low value. The data-based and the response pre-
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Figure 3.5: Locality of network traffic observed at a
file server

diction algorithm both worked better than the naive
algorithm in all cases. The response prediction was
observed to be much better than both of the others
for the client workstation. Its ratio improved very
rapidly with the stack size, requiring no more than
2 entries to reach a plateau. The data-based predic-
tion and response prediction worked identically for
the server. This is explained by the observed fact
that a file server generated few request packets. The
plateau in hit ratio was reached for cache size of 6-
8 entries for a server as opposed to 3-4 entries for
a client. The difference exists because of the server
receiving simultaneous traffic from multiple clients.

3.2.3 Overload Protection

An additional benefit of having onboard intelligence
is that hosts can be well-protected against network
malfunctions or hostile users. Currently, most hosts
stop doing any useful work when the traffic from
network exceeds its capacity to handle it. The pri-
mary reason is that a host gets involved in processing
packet which are dropped at transport or higher lay-
ers. This allows an opportunity to a hostile remote
user or some kinds of network malfunction to pose a
threat to a host. The term “overload protection” is
used here to refer to mechanisms designed to protect
a host from such traffic.
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The buffer reservation model of a host-adapter in-
terface, suggested in Section 3.2.1, offers the neces-
sary mechanism for overload protection. Any packet
that does not have a waiting buffer reservation from
its destination process is dropped on the floor. In-
stead of notifying a host for every dropped packet,
the adapter summarizes this information and period-
ically sends it to a host. The period at which such
notifications are given is programmable by host soft-
ware. Further protection is provided by allowing host
to suppress traffic with a general filtering function
sent to the adapter. With it, an adapter can prevent
packet traffic to specific destinations, from specific
sources, types of packets, and any combinations of
these conditions.

This scheme offers a better protection than that
offered by disabling of packet interrupts. A host can
disable packet interrupts preventing any packets from
being received, thus protecting itself against the traf-
fic overload. Unfortunately, disabling of interrupts
would discard legitimate packets sent to the host,
thus fulfilling in part the intent of the hostile user.
Whereas, the powerful and general mechanism offered
by the buffer reservation model, coupled with the
adapter fast enough to receive and throw out packets
at the maximum rate of the network link, may allow
a host to continue to receive and to send packets even
with the overloaded network. Note that this mech-

" anism provides only one-way protection. To protect

network from being flooded by a host, one should add
mechanisms to detect hosts currently sending exces-
sive amount of traffic and mechanisms for isolating
offending hosts from the rest of the world.

3.3 Alternatives

In this section we will examine proposals for host in-
terface architecture that do not use onboard intelli-
gence. The primary reason for considering them is
the cost of intelligent adapters. One of the propos-
als is to increase performance by reducing number of
packets per data transfer. The second proposal is to
avoid storing packets fully at the adapter. The third
one is really an objection often raised against intelli-
gent adapters.

3.3.1 Larger Packet Size

Increasing the size of packet reduces the average num-
ber of packets formed for exchanging user-level data.
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This has been argued by some researchers as the right
approach for increasing performance. The argument
proceeds like this: Since the performance is limited
by packet-processing time, reducing number of pack-
ets per segment by using larger packet sizes, should
increase throughput. As we show in this section, the
argument is superficial and is based on the experience
of current host interfaces.

The throughput thus increased by increasing
packet size has an upper limit that is determined
by the make-up of packet processing time and the
host interface. A cost of processing packet has two
parts: the fixed part, due to processing of headers,
and the variable part, due to operations such as copy-
ing and checksumming of data. In current interfaces
[1, 23, 59], the fixed part dominates the variable part.
Thus, the performance improves as the packet size
increases. But with a packet that is say 10 times
the size of the biggest Ethernet packet, the variable
cost dominates the fixed part. At this point, further
increase yields marginal increase in throughput. Ad-
ditionally, in NAB interface architecture, the fixed
processing overlaps with the variable part. In such a
case, increasing a packet size beyond some size would
not increase throughput. A

Larger maximum size of packets causes three ma-
Jor problems. In network transport involving hops
through store-and-forward routers, larger packet sizes
increase end-to-end delay. The larger packet size also
increases probability of a packet being lost due to er-
ror. The other problem is increasing the response
time for other users, because increasing maximum
packet size results in disproportionately higher delay
for users with small amounts of data to exchange.

3.3.2 Cut-through Adapters

We define adapters that do not need to store a full
packet while processing as “cut-through” adapters.
These have been considered “ideal” interfaces by
some researchers [61]. Our analysis shows that cut-
through adapter (CTA) is either marginally better or
much worse than the intelligent adapter (IA) depend-
ing on the level of other bus traffic on host bus.

We used a simulation to compare their perfor-
mances. The CTA is modeled as a server that is
faster than the maximum arrival rate of packets. The
packet is put into a FIFO waiting for bus access.
The size of a FIFO is smaller than the maximum
packet size of the network. Bus access is modeled as
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a random event with exponential distribution of time
between two consecutive accesses. The distribution
depends on the interference of bus traffic originating
from other sources such as disk-to-memory and cache
traffic. After the bus is acquired, data from FIFO is
transferred in a burst of fixed size. The bus is not re-
quested until FIFO collects data equal to this burst
size. We studied response times when burst sizes are
32, 1024 or 4096 bytes of data. The maximum size of
packet is assumed to be 4 Kbytes of data plus the size
of a VMTP header. The IA transfers data over host
bus only after a full packet is stored and processed.
Figure 3.6 indicates the impact observed on response
time for reading a 16 Kbyte data using two differ-
ent types of adapters. Neither of them lost or retried
any packet, since in absence of interference the bus
is always available in time. The response time in IA
is no worse than 7% of that of CTA up to a gigabit
network speed. Intuitively, this is a result of IA over-
lapping packet processing with that of sending data.
The time added due to the store-and-forward nature
of IA is for the first packet. Figure 3.7 shows how
much worse it would get for the cut-through adapter
when bus interference is accounted for. Bus interfer-
ence at the sender forces transmission of an aborted
packet to be restarted. At the receiver, it will result
in overrunning FIFO and thus result in a packet loss.
For a 30% overhead, we observe in our simulation
that the IA is 20% better than the CTA.

Additional problems argue against using cut-
through adapters. The bandwidth of host bus is
wasted when a packet is received with a transmission
error. Moreover, a host is not protected against net-
work malfunctions and hostile remote users. Without
storing a packet fully it is not feasible to provide this
protection. Additionally, implementations of fair-
ness and priority mechanisms are difficult with cut-
through adapters. With this interface, one is forced
to service packets in a first-come-first-serve (FIFO)
order. Any data including those which are controls
for relieving network congestion would have to wait
their turn.

3.3.3 End-to-end Checksums

This is not an alternative but really an objec-
tion raised against intelligent adapters. End-to-end
transport-level checksums are calculated by an intelli-
gent adapter. This means that data errors in adapter
memory or transfer over bus would go undetected.
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This is perceived as a problem by some researchers
in view of the end-to-end arguments made by [53].
We disagree. The real concern should be to ensure
that a network link isn’t the weakest link for the reli-
able operation of the system. Performing end-to-end
checksums at the adapter is at least as safe as using
the disk controller that does block-check errors and
the memory controller that detects parity errors. For
a typical computer system, traffic between disk or
memory and host processor is carried by a host bus
that does not protect against transmission errors. If
one desires a more reliable system, one could use a
parity line on the bus or block checksum hardware
for each bus interface.

End-to-end checksums are performed at the
adapter for the performance reason. Checksumming
at a host affects the performance of network com-
munications traffic and also wastes critical resources
such as host bus and memory bandwidth. Thus, it
affects the performance of the entire system. The
alternative solution, checksumming at the adapter,
results in a reliable system where network traffic is
as well protected against bus and memory error as is
the disk I/O or cache traffic.

3.4 Summary

In this chapter, we have addressed the question of
how much onboard intelligence is necessary. We
found that an adapter performing checksumming, en-
cryption of data and processing of intermediate pack-
ets brings three major benefits. First of all, such an
adapter minimizes data movement over the host bus
to one per data word. The minimization saves host
bus cycles, a critical resource, increasing performance
of other users of the bus and also increasing perfor-
mance in a multi-processor host. The second benefit
is that the intelligent adapter with the “buffer passing
and reservation” model, proposed here, can eliminate
virtual or physical copying of data between user and
kernel’s address spaces. The third benefit is that the
intelligent adapter saves main processor cycles, par-
ticularly important for hosts providing network ser-
vices. Additional benefit of the onboard intelligence
is that one can protect hosts better against network
malfunctions and hostile users.

Current intelligent adapters are slow. This was a
motivation for us to examine techniques for increas-
ing their performances. We found three general tech-
niques that are useful for reducing per packet process-

ing time. Concurrent processing of packets with their
transfer to network and host will increase through-
put for multiple packets. The technique is particu-
larly effective when the memory and bus architecture
of the adapter is reorganized to permit true concur-
rency for these activities. The pipelined packet pro-
cessing, proposed here, executes checksumming and
encryption while packets are being transferred to and
from the network. The pipelined processing folds the
cost of checksumming and encryption with that of the
transfer of packets and thus reduces per packet pro-
cessing time. The third technique we studied is the
prediction of headers of expected packets. We pro-
posed a new header processing algorithm that used
predicted packet headers as hints in processing re-
ceived packets. The performance of the technique de-
pends on how often the hints would become true. We
analyzed packet traces collected in the operational en-
vironment and found that the prediction would suc-
ceed 65%-98% depending on the number of predic-
tions stored and the prediction policy used. We also
found that the prediction rate is consistently high for
both client and server machines.

Finally, we compared the proposed choice regard-
ing onboard intelligence with two alternatives: dumb
adapters with large packet sizes and semi-intelligent
adapters with minimal onboard storage of packets,
also called cut-through adapters. The comparison
with the dumb one with large packet sizes showed
that the intelligent adapter has equal or better per-
formance because of the overlapped header processing
and data movement and has none of the disadvan-
tages of the other such as high delay for exchang-
ing small amounts of data. The comparison with
the cut-through adapter showed that the intelligent
adapter has almost equal or better performance than
the other. For this comparison, we used a simulation
that took into account the effect of interfering traffic
on the host bus and delays in bus access. Results
of the simulation measurements show that the intel-
ligent adapter has about 20% lower request-response
delay for a 16-Kbyte transfer with 30% bus capacity
used for non-network traffic. For 0% bus interference,
an environment that favors cut-through adapters, we
found that intelligent adapters have less than 5%
more request-response time compared to that of cut-
through adapters.

In the next chapter, we describe a network adapter
architecture embodying principles discussed here.




Chapter 4

NAB Architecture:

4.1 Introduction

Reducing packet processing overhead based on the
principles discussed earlier depends on improvements
in three separate areas: transport protocol design,
the architecture of network device, interactions be-
tween host processor and network device. Previous
experience suggests that improvements in any one do
not significantly improve performance. We obtained
dramatic improvements by making interdependent
changes in all of these areas and proposed an archi-
tecture based on these changes. Our work in this area
shows clearly the nature and scope of this interdepen-
dence. In this chapter, we describe only the relevant
features of the proposed architecture, which we call
Network Adapter Board (NAB) architecture. The
details of the architecture are published in [39, 40].

4.2 Host-Adapter Interface

The host interface with the network adapter is de-
signed to minimize the host overhead for network
communication. The basic interface appears to the
host software as a 1024-byte control register. To
transmit data, the host software writes a control
block, the Transmit Authorization Record (TAR), to
this control register. The TAR contains control in-
formation describing data to be sent including the
pointer to data in physical memory. If the data fits
entirely within the control register, the data segment
description is omitted from TAR. In both cases, the
network adapter transmits the data, as well as per-
forms checksumming and encryption (if required).
For reception, the host software writes a control
block, a Receive Authorization Record (RAR), that
“arms” the network interface to receive packets, spec-
ifying the maximum size to receive and the location
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in host memory into which to deliver the data. The
RAR can specify any one of: (1) a specific source, (2)
a class of allowable sources or, (3) any source for the
received data. where source is either a transport-level
or network-level address.

The interface interrupts the host when the received
packet(s) satisfies one of these RARs, returning the
RAR, along with the packet header, to the appropri-
ate host via the control register. The returned RAR
itself may contain small amounts of data in addition
to the corresponding packet header. When the RAR
is returned, the data has been already stored in the
host memory at the location pointer(s) contained in
it, unless the data is contained in the RAR. Incoming
packets are discarded if they cannot be matched to
an outstanding RAR.

The first byte in the control block distinguishes the
types of the records passed via the control register.
Four major types of records, used in transmission and
reception of data, are an RAR with small amounts of
data, an RAR with data descriptors, a TAR with
small amounts of data and a TAR with data descrip-
tors. Additional types of records are used by a host to
add or delete acceptable destinations, to restrict traf-
fic from a source, to provide decryption/encryption
keys to the NAB, to get status information, and to
reset the NAB.

The RARs and TARs include some common con-
trol information used by NAB, a packet header in-
cluding a network-level header, and either small
amounts of data or a list of data descriptors point-
ing to locations in the system memory. The common
control information includes a link field, type of RAR
matching, transport-level source and destination ad-
dresses, interrupt control flags, a local host number,
and a local process identifier. The buffer descrip-
tors are omitted for TARs and RARs containing small
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amounts of data. A link field, used by the on-board
processor, allows chaining of these records as neces-
sary. The type of RAR matching to be done indicates
if the RAR can be used for receiving traffic only from
the specified source or any source. Interrupt control
flags are used to determine when to interrupt the host
identified in the record. On reception, one may have
the host interrupted either when the data of the first
packet is stored in the system memory or when the
data is completely received or both. The RAR is
written into the control register with the length of
data received before the host indicated in RAR is in-
terrupted. On transmission, one may have the host
interrupted either when the NAB begins processing a
TAR, or when the last of the data segment is trans-
mitted. The TAR is written into the control register
before a host is interrupted. The buffer descriptors
in a TAR point to locations in the physical memory
space where data to transmit is available. The buffer
descriptors in an RAR point to locations in the phys-
ical memory space where the data is to be received.
The returned RAR and TAR contain, in addition to
the buffer descriptors, the number of data words ac-
tually received or transmitted.

In the following, we discuss how this interface effi-
ciently handles small amounts of data, large amounts
of data, and also allows the interface to act as a fire-
wall, protecting the host from the network.

4.2.1 Short Message Handling

The latency with short messages is minimized be-
cause the short message is written to the interface
as part of the TAR and read as part of the returned
RAR on reception. The operating system interrupt
handlers for the network adapter can directly copy
the message data between the control register and the
operating system data structures, moving the higher-
layer data to its intended destination with minimal
cost. Thus, the delay introduced in transmitting and
receiving a packet with a small amount of data is no
more than that incurred with a host directly handling
the packet and using the interface as a staging area
to send and receive packets.

Note that including the packet header in the TAR
means that the processor writes a small amount of
data to the interface for transmission yet the net-
work adapter has minimal processing on the data to
prepare packets for transmission. In particular, for
small data appended to header, the network adapter
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need not do anything before starting network trans-
mission, given that checksumming and encryption oc-
cur as part of transmission.

4.2.2 Long Message Handling

Host overhead is minimized for the transmission and
reception of large amounts of data, typically in the
range of 4-16 kilobytes, by passing descriptors rather
than actual data. On transmission, the host writes
one TAR and receives one completion interrupt, with
the network adapter transferring the data from host
memory with minimal bus overhead.! The network
adapter handles the per-packet overhead of packetiz-
ing, checksumming, encryption and per-packet coor-
dination. On reception, the host receives a single
interrupt for each RAR returned after the data has
been transferred into global memory. Again, the per-
packet interrupt overhead is handled by the network
adapter.

In sending and receiving groups of packets, the in-
terface can afford to introduce some latency for the
first packet of the group as long as the whole trans-
mission and reception has less delay as compared to a
host processor handling per packet processing. That
is, for a small number of packets K, it should be the
case that

K % Prost > D+ K * Pinterjace

where writing the control record to the interface in-
troduces a delay D in transmission over the host pro-
cessor writing the data directly to the network, K is
the number of packets to be transmitted, Pj,,; is the
time for the host to packetize and send one full-sized
packet and Pinterface is the time for the interface to
transmit one full-sized packet. The value of K for
which this is true should be as small as possible, ide-
ally 1 but certainly less than the common size of a
multi-packet packet group.

4.2.3 Network Firewall

The interface architecture is designed to allow the
network adapter to function as a firewall, protecting
the host from network packet pollution, both acciden-
tal and malicious. In essence, a host incurs no over-
head for network packets whose reception it has not

! The VMP memory supports block transfer using the VME
serial bus protocol, thereby minimizing bus occupancy and ar-
bitration overhead.
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authorized; the interface discards all packets that are
not compatible with an RAR provided by the host.
As a particular example, if the host does not provide
an RAR for broadcast packets, then garbage broad-
cast packets incur zero overhead on the host proces-
sor(s). In general, the authorization model of packet
reception plus the speed of the network adapter insu-
lates the host from packet pollution on the network.

4.3 NAB: Hardware

The network adapter internal architecture is designed
to provide maximal performance between the host in-
terface and the network architecture. The internal
architecture is structured as five major components,
interconnected as shown in Figure 4.1. These com-
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Figure 4.1: Network Adapter Board Architecture

ponents serve the following functions:

Network access controller (NAC) : implements
the network access protocol and transfers data
between the network and the adapter.

Packet Pipeline : generates and checks transport-
level checksums and performs encryption and de-

cryption of data for secure communication.

Buffer memory : a staging and speed-matching
area for data in transit between the packet pro-
cessing pipeline and the host memory. Its spe-
cialized buffer memory permits fast block data
transfers between the network and host and pro-
vides the on-board processor with contention-
free memory access to the packet data.

Host block copier : moves data between the buffer
memory and the host memory using a serial bus
transfer protocol, minimizing the latency as well
as the bus and memory overhead for transfers.

On-board processor : a general-purpose processor
that manages the packet processing pipeline and
various bookkeeping functions associated with
the protocol.

Transmission is handled in three steps. When a
Transmission Authorization Record is written to the
interface, it is moved into the interface from the host
memory by the host block copier. The TAR pro-
vides a description of the segment of data in the host
memory to transmit. Next, the on-board processor
forms the first packet from the TAR and first data
blocks of the message and queues the packet for the
packet pipeline using the information provided by the
TAR. Finally, the packet is processed and transmit-
ted by the packet processing pipeline and NAC at the
network data rate. The pipeline calculates a check-
sum and optionally encrypts the data as the packet
is transmitted.

On reception, a packet is accepted by the NAC
and passed through the packet pipeline which de-
crypts the data, verifies the checksum, and deposits
the received packet into buffer memory. If the re-
ceived checksum is verified, the packet is matched to
the appropriate RAR. For the first packet in a group
of packets, this may involve locating and allocating
a non-specific RAR, making it dedicated to receive
more packets from this source. The packet data is
then delivered to the host memory associated with
this RAR. The reception of a packet into buffer mem-
ory proceeds concurrently with both the checksum
verification and transfer to the host of previous pack-
ets. On reception of the final packet or on timeout,
the host is interrupted and informed of the receipt of
this packet group by returning the RAR in the in-
terface control register. Thus, the host is interrupted
only once per RAR used by the NAB.
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If there is no matching RAR for a packet, the
adapter determines whether the destination address
is locally acceptable. An address is locally acceptable
if the address is in the local host’s list of destina-
tion addresses, both individual and group addresses.
The adapter then transmits a response to the local
host indicating that the packet was discarded. When
the destination address is valid but no RAR is found,
the interface discards the segment data and returns
an indication to the destination host via the control
register. The interface does not time out a partially-
filled RAR; the partially-filled RAR is returned to
the host only on an explicit request from a host. The
host handles sending out retransmission requests and
various timeouts. The host also sends acknowledge-
ments and handles retransmission requests by issuing
a new TAR.

Three key aspects to the design are the buffer mem-
ory, the packet processing pipeline, and the use of the
general-purpose processor, as discussed in the follow-
ing sections.

4.3.1 The Buffer Memory

The network adapter requires buffer memory in order
to speed-match between the host bus and the network
as well as to provide a staging area for the transmis-
sion and reception of packets. Three issues arise with
the buffer memory design. First, the buffer mem-
ory must provide sufficient contention-free memory
access to support simultaneous use by the on-board
processor, NAC, and block copier, which happens un-
der load. The performance of many so-called “smart”
network adapters suffer from this contention. Sec-
ond, the buffer memory must minimize latency for
packet transmission and reception over direct trans-
mission between the host memory and the network.
Finally, a provision is required to prevent overcom-
mitting the buffer memory to either transmission or
reception, which would interfere with the functioning
of the adapter. Our approach to each of these issues
is discussed below.

Buffer Memory Contention

To minimize contention, the buffer memory uses
dual-port static column RAM components, also re-
ferred to as Video RAM ICs. The Video RAM-based
buffer memory, shown in Figure 4.2, provides multiple
buffers to hold and to process packets while a packet
is being received or being transmitted. This IC pro-

| 4 bits x 8 Video Ram = 32-bit word
I 1
Address 256x256x4 bit Random-access
D— memory anrey e
Data Port

Serial-access
I 256x4 bit Reg. I—_Dau Port o

Figure 4.2: Video RAM-based Memory of NAB

vides two independently accessed ports: one provid-
ing high-speed serial-mode transfer, and the other
providing random-access. The serial-access port is
used to move a packet from the network into the
buffer memory or the data from host memory to
the buffer memory. The random-access port pro-
vides memory access for on-board processing of pack-
ets by the adapter’s general-purpose processor. The
serial access does not need address set-up and decod-
ing time so read-write times on this port are faster
than read-write times for a RAM array. For in-
stance, in our prototype, memory is 32 bits wide,
the serial access time is 40 ns per word and the cy-
cle time for random read/write access is 200 ns. This
gives an effective transfer rate of 800 megabits/second

over the serial port and 160 megabits/second over

the random-access port. To provide the equivalent
memory bandwidth on a single ported standard 32-
bit wide memory would require a memory IC with
read/write cycle time of 33 ns. Currently, such fast
memories are available, but they cost more and have
less memory density than video RAMs. Due to simul-
taneous memory accesses made by onboard processor
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and by network, page mode RAMs are less effective
than Video RAMs in providing high-speed memory
accesses. Interleaving of memory, which would reduce
the buffer memory contention, was not the preferred
solution because of its cost and because it would re-
quire faster memory-processor bus than that required
in the VRAM-based memory.

Data transfer operations in this memory proceed
as follows. A packet (or data) is received from the
network (or the host) via the serial port and moved
into the shift register contained in the Video RAM
ICs. The shift register acts as the temporary storage.
When the block is completely received, it is trans-
ferred from the shift register, in a single memory
cycle, to a row of the memory cell array constitut-
ing the buffer memory. The processor manipulates
header fields of packets stored in the array via the
random-access port. The processing of a packet con-
tinues without interference while the next packet is
being received, except for one memory cycle stolen
for each received packet transferred to the memory
cell array from the shift register.

Video RAM ICs provide performance that closely
approximates the performance of true multiport
memories, but at a fraction of the cost. A triple-
port memory cell would triple the area of the mem-
ory cell, reducing memory density and increasing its
access time. Video RAMs provide full memory band-
width to the processor at low cost. They also al-
low high-speed block data transfer between the buffer
memory and the host or network. The separate serial
port avoids the processor losing memory bandwidth
to arbitration overhead on the random access port.
The serial transfer ports, accessed in parallel across a
bank of video RAM ICs, maximizes the data unit to
be transferred per arbitration between the host block
copier and the NAC and minimizes the transfer time,
thereby minimizing the arbitration penalty.

High speed FIFOs could be used as an alterna-
tive to the buffer memory described above to speed-
match between the host and the network. Intuitively,
a FIFO-based design should have minimal delay for
two reasons. With short FIFQOs, one begins to pro-
cess and transmit the packet before the entire packet
has been copied. ’

The FIFO approach also avoids the software over-
head of managing input and output packet queues.
Nevertheless, our buffer memory design provides bet-
ter performance as we show in this section.

When the system bus is lightly loaded, our design

compares favorably with the FIFO approach for large
and small amounts of data transfers. For large data
transfers, our design amortizes the buffering latency
of the first packet over multiple packets. For a short
single packet transfer, the difference in delay is small
because the main source of delay in this case is the
processing done at a host and the adapter, not the
time of copying data to the interface.

However, at even moderate levels of bus traffic, our
design outperforms the FIFO-based approach. When
the bus is congested, the demand for bus access may
not be satisfied in time to avoid underrunning or over-
running a FIFO, resulting in packet loss at a sender
and at a receiver. The time thus lost in transmitting
aborted packets as well as the retransmission delay
increases the total time needed to transfer a data seg-
ment.

Mismatch between transmission data rates on the
host bus and the network channel also supports us-
ing buffer memory. When host bus speed is much
higher than network channel speed, the additional
delay for bringing the first packet in full before begin-
ning transmission is negligible compared to the total
transmission time for a large data segment. When
host bus speed is comparable to (or lower than) the
network channel speed, bringing in a full packet be-
fore starting transmission is necessary to avoid (fre-
quent) loss of packets by contention on the bus.

Buffer Latency

Buffer latency refers here to the additional delay
caused by the on-board buffering of a packet as com-
pared to the direct transmission by host to network.
We minimize it by using a hardware block copier
and by using contention-less memory accessing. A
block copier transfers data between host memory and
NAB using a serial memory transfer protocol, which
minimizes transfer time and bus occupancy. More-
over, the NAB memory design described above facil-
itates high speed block data transfers 2 and provides
contention-less memory accessing, both minimizing
the buffering latency.

In this design, the cost of buffering latency of the
first packet is amortized over the subsequent pack-
ets sent in the packet group. The subsequent packets
are copied from the host memory or the network link

2 The maximum transfer rate, using currently available
Video RAMs, may be as high as 800 megabits/sec, assum-
ing word width of 32 bits and 40 ns cycle time on the serial
port. .
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in parallel with the processing of the previous packet
transferred, hiding the cost of their buffering latency.
For large amounts of data, the buffering latency of
the first packet forms only a small fraction of the to-
tal delay. For instance, the minimum transmission
time for 16 Kbytes of data over a 100 megabits/sec
network is 1.31 ms; whereas, the buffering latency for
the first packet in this packet group is approximately
25 microseconds, 3 which is less than 2 percent of the
total transmission time. The latency is even less sig-
nificant compared to request-response delay for large
data transfers, as this delay includes processing times
at the host processors.

We note that the data transfer between host and
interface buffer memory does not constitute an extra
copy because the NAB performs all the functions that
the host processor would have otherwise performed if
it was performing the transfer. That is, the interface
memory is required as a staging area for incoming
and outgoing network traffic in any case.

Reception of Garbage Packets

Ideally, the mechanism for matching a packet to an
RAR is fast enough so that it cannot be overrun by re-
ceiving garbage packets from the network. The pack-
ets with correct node address or multicast packets
may still be undesirable, if the host is being bom-
barded with them due to a network malfunction. In
the interface, the on-board processor is not involved
in transferring packets into the interface memory, and
can receive a number of packets without being inter-
rupted by the NAC. In the prototype NAB using a
fast microprocessor such as AMD 29000, the RAR
matching algorithm runs fast enough to keep up with
a packet rate in excess of 185,000 packets/sec, which
is more than the maximum packet rate of 160,000
packets/sec of a 100-MB FDDI network assuming all
packets are minimum size VMTP packets. As long
as the network throughput does not exceed adapter’s
processing capacity, the buffer memory cannot get
filled up with packets that do not match an RAR.
Thus, the availability of buffer memory to receive au-
thorized packets remains independent of the network
pollution that may be taking place.

3 Calculated by assuming packet size of 1024 bytes and
block transfer rate of 320 megabits, available with the serial
mode transfer on the VME bus.
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4.3.2 The Packet Processing Pipeline

The network adapter incorporates several hard-
ware modules that constitute an interlocked packet
pipeline, performing checksumming, encryption and
network access on transmission, and the reverse on re-
ception, all operating at the network data rate. Each
stage in this pipeline is a simple operation, such as
memory read /write, compare, and one’s complement,
as needed for these algorithms. The data transfer
unit between stages is 32 bits. A word is prefetched
at each stage and stored until the function is com-
pleted. A short FIFO is included in the NAC to al-
low for setup delays for decryption and node address
recognition on packet reception. The on-board pro-
cessor updates packet headers and queues the packets
for transmission as well as processes packets on recep-
tion.

The common format used for all VMTP packet
types, shown in Figure 4.3, is ordered so as to mini-
mize processing delay, overhead and complexity. The
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Figure 4.3: A VMTP packet

first field specifies the client entity associated with the
message transaction, the indicator for the decryption
key to be used with the packet. The second field in-
dicates the length of the packet and various address
qualifiers. It is sent in the clear, providing the net-
work adapter with some time to access the decryption
key before it encounters the encrypted portion of the
packet. Various other fields follow that indicate the

'VMTP type of packet, its packet group and its po-

sition within the packet group. The order of these
fields also corresponds to the order in which the re-
ception logic needs to map the packet to a particu-
lar client, packet group and data within the packet
group. The checksum field is located at the end of
the packet, (rather than in the header) so that it can
be calculated “on the fly” on both transmission and
reception. The length field specifies the offset of the
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checksum field from the beginning of the packet.

Reception processing proceeds as follows. When
a packet starts to arrive at the network access con-
troller, it checks the destination address and then for-
wards the first words of the packet to the first stage
of the decryption hardware. At this stage, the first
data word received is delayed until a decryption key
is located in the decryption key cache (indexed us-
ing a hardware hashing function on the destination
address). If the key is located, the data proceeds
through the decryption stages, each one of them per-
forming a function in the decryption algorithm.* If
the key is not located or decryption is not needed,
the data stream proceeds to the checksumming stage
with the decryption stages disabled. The start and
end points for checksumming of data bytes is speci-
fied by the offset values initialized by the user. Each
data word is passed through a 1’s complement sum to
form two 16-bit partial checksums.® After receiving a
packet, a 32-bit checksum is calculated from the par-
tial checksum and added to the buffer. The final step
is to write the data word in the serial staging regis-
ter. When the end of the packet is received, the data
is moved to a receive buffer address provided by the
serial-port controller. The empty buffer addresses are
provided to the controller by the on-board processor.
The received buffer is queued for header processing
by the on-board general-purpose processor.

The received packet is lost if the buffer memory is
full. A packet is also lost whenever the transmission
is interrupted due to the lack of data in any stage of
the pipeline. Both these unusual conditions require
flushing and restarting of the pipeline, a task that is
handled by the processor.

A packet pipeline as described increases the perfor-
mance due to the following reasons. The processing
overhead of performing functions such as checksum-
ming and encryption is hidden in the copying oper-
ation, i.e., the copying of packets from the network
to the buffer memory. Otherwise, additional memory
references would be required to perform checksum-
ming or encryption, wasting bus capacity as well as
memory bandwidth, which are critical resources in
a multiprocessor system (and in a network adapter).
The latency due to the packet pipeline is kept low by
using very few stages, and by restricting the width

% For the prototype, we have used a single cycle of product
cipher algorithm that is similar to the DES standard.

5 The complete checksum algorithm used is described in the
specifications for VMTP [9].

of the pipe. In the prototype, the pipeline uses fewer
than 5 stages and a 32-bit wide data path. In con-
trast, if a larger unit of inter-stage data transfer, such
as a full packet, were used, the time to fill up the
pipeline would be larger, thus increasing the latency
to transmit a packet. Finally, many simple stages,
implemented in hardware, and running in parallel
provide better performance than a single fast pro-
cessor performing the same functions.

The fine-grained, tightly synchronized processing
achieved by the packet processing pipeline suggests
that comparable performance would be difficult, if
not impossible, to achieve with multiple general-
purpose processors working in parallel. In particular,
with a single packet transmission or reception, the
multiprocessor solution would perform at the level of
a single processor, which is far below the performance
of the NAB pipeline. With multi-packet transmis-
sions and receptions, each processor has to wait for
the reception of “its” packet before it can start pro-
cessing the packet. The combination of waiting for
these large units of data, the processing overhead per
packet and the limited number of packets in a “blast”
makes this approach unattractive.

A general-purpose multiprocessor solution is fur-
ther hampered by the degree of correlation observed
between successive packets received from the net-
work. For example, the measurements of the VMTP
traffic on a 10-Mb Ethernet [11] show that statisti-
cally the packet currently being received belongs to
the same message transaction to which the previous
packet belongs. Because packets in the same message
transaction share control block information at sender
and receiver, this correlation results in interference
among multiple processors for both memory access
and synchronization. Thus, a general multiproces-
sor architecture in which each processor works on a
different packet appears significantly inferior to the
pipelined architecture of the NAB.

We have placed the packet pipeline between the
buffer memory and the network, forcing it to run
at the network data rate. This alternative would
be to place it between the host bus and the buffer
memory. The alternative placement is undesirable
on many counts. Burst transfer rates on host buses
are much higher than network rates, forcing one to
operate the pipeline at higher data rates. The syn-
chronization of the pipeline operation with the bus
is also more difficult because the interface typically
involves transfer of data from memory as well as con-
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trol information from one or more host processors.
Moreover, on reception we do not know where to put
data until the received packet is decrypted, further
complicating the pipeline design. Last but not least,
placing the pipeline at the host-end precludes strict
implementation of a network firewall; data is trans-
ferred across the system bus before detecting check-
sum errors or that the packet is not wanted.

Most transport-level protocols preclude strict
pipeline processing as described here because the
checksum field is included in the header. As a conse-
quence, the checksum has to be calculated before the
packet header can be transmitted, preventing signifi-
cant pipelining. VMTP appends the checksum to the
end of the packet to allow pipelining. It also uses a
32-bit checksum for compatibility with the pipeline
width, as compared to the conventional 16-bit check-
sums used in TCP.

The main disadvantage of the packet pipeline de-
scribed here is that it is protocol-specific. The other
disadvantage is that the pipeline has to operate at
the network data rate, although the functions imple-
mented in the pipeline are simple and one could use
a CMOS logic up to 1 gigabit/sec rate. Note that
each stage of the pipeline processes one word (32-bit
wide) at a time, and hence is clocked at a rate 10°/32,
i.e. 32-Mhz, well within the range of current CMOS
technology.

4.4 NAB: Software

4.4.1 The On-board General-Purpose
Processor

The network adapter includes a general-purpose pro-
cessor that manages the buffer memory, the host
block copier and the packet processing pipeline. A
general-purpose processor was chosen for these func-
tions because they are significantly more complex
than other functions, offer less performance benefits
in a specialized hardware realization, and were less
understood than the packet pipeline and block copier
functions. The cost of processing performed by the
NAB processor seems to be equally shared among
various functions rather than being dominated by a
few performance critical functions, thus reducing any
potential benefit of the hardware realization. More-
over, using a general-purpose processor instead of a
special-purpose protocol processor allows one to ben-
efit from the continual advances in microprocessor
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technology.

With the general-purpose processor, we can pro-
gram the basic queueing and dequeueing required
to manage the buffer memory as well as any func-
tions required by the protocol. However, we have
taken care to partition the processing between this
on-board processor and the host processors as follows.
The on-board processor executes the “common case”
packet processing, namely, the error-free transmission
of packets; whereas, a host processor executes the
“rare” case packet processing, which includes func-
tions such as acknowledgement and retransmission of
messages. The distinction is made primarily to sim-
plify and thus execute faster the functions critical for
improving the whole transmission or reception. For
example, when transmitting a VMTP packet group,
the processor updates the header delivery mask and
appends a new buffer of data to the packet header
between packets, queuing the new packet for the
packet pipeline. However, one of the host processors
is charged with forming the header for the first packet
of the group because this task is more complex and
requires close interactions with the user process and
the operating system.

The on-board processor keeps a queue of TARs and
RARs waiting for processing. The TARs for sending
a single packet are directly queued for transmission.
The others are added to a circular queue of TARs
scanned periodically by a scheduler. The scheduling
of TARs take into account the priority and the inter-
packet timing gap constraints attached to each TAR.
Typically, each ready TAR gets to send a packet be-
fore the next one can be sent from the same group of
packets.

A hashing algorithm is used to match the incom-
ing packet’s destination address to the locally accept-
able addresses. The hash table entry contains the
acceptable destination, local host number, local pro-
cess identifier, and a pointer to a queue of waiting
RARs. For the first packet in a group of packets,
the packet’s destination address is first used to locate
the appropriate queue of RARs and then to match
the appropriate RAR. The matched RAR is assigned
to this group of packets and added to a list of re-
cently matched RARs. This list is scanned first for
the subsequent packets of this group of packets. In
addition to filtering done by matching of RARs, it is
also possible to filter packets based on a small number
of (network-level or transport-level) source addresses
from which all traffic is refused. This facility imple-
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ments the “firewall” function which allows the NAB
resources to be protected to some extent from failures
or malicious behavior of a remote host processor or a
user process. The selection of the appropriate source
address to block on is done by a local host processor
monitoring the traffic from the network.

The RARs and TARs remain indefinitely at the
NAB until either the operation requested is complete
or until a host requests them back by issuing a reset
of the NAB. This “soft” reset operation allows a host
to clear the queue of waiting RARs or TARs bound to
a specific destination, or all waiting RARs and TARs
at the NAB. Explicit timeouts per TAR or per RAR,
based on the timeout values provided by a host, is an
alternative way of handling the problem of unused
RARs or TARs. These explicit requests to flush out
the unused records minimize the timer-related NAB
processing, which is a non-trivial overhead especially
at servers that may have many outstanding RARs
and TARs. We expect the frequency of such flushes
to be small, justifying the additional overhead of the
“soft” resets.

4.4.2 Host-Adapter Interface: Details

In this section, we focus on the message formats
and the semantics that define host-device interaction.
Figure 4.4 shows the details of a format of messages
exchanged between device and host.
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Figure 4.4: An UNDIP Message

Type Function

000 TAR (RAR) request with buffers
001 TAR (RAR) response with buffers
010 TAR (RAR) request with data
011 TAR (RAR) response with data
100 TAR request with multicast response
101 CR request and response

110 TAR and RAR request with buffers
111 TAR and RAR request with data

Figure 4.5: Types of Messages in UNDIP

Two basic formats used are Transmit Autho-
rization Record (TAR) and Receive Authorization
Record (RAR), distinguished by the T/R bit. TAR is
used to control transmission from a host to network
and RAR is used to control reception from a network
to host. The Packet Header field in a TAR contains
the header of the first packet to be sent or received.
The Buffer List contains a list of pointers to host
memory pages, which in turn contain data to send
or received data. The Next link facilitates storing of
records in a queue. Messages recognized in UNDIP
are distinguished by the Type field (Figure 4.5).

Basic Procedure

A typical procedure used for data transmission and
reception is as follows. To transmit data, the host
sends to the device a TAR (Type=000) with the
packet header and a list of descriptors of host mem-
ory pages containing data. The packet header is used
by device as the first packet header. It is also used
with minor changes as the packet header for subse-
quent packets formed out of the same data segment.
A host can line up more than one TAR at a time
and the device multiplexes their transmissions. The
completion of transmission is signalled by the device
returning the TAR to the originating host.

To receive data, the host sends to the device an
RAR (Type=000) with the packet header of the first
packet expected to be received and a list of point-
ers to memory pages reserved for receiving data.
The packet header contains a specific or partially-
defined source node address and transport-level iden-
tifiers. For each incoming packet, the device matches
the received packet to an RAR and, on a success-
ful match, writes the received data to host memory
pages pointed to by the matched RAR. If the buffer
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list is exhausted or transaction is complete, the RAR
is returned to its originating host processor. Each
transport-level identifier may have multiple RARs
waiting for packets to arrive. In this basic proce-
dure, no matter how large the data segment is, only
four host-device messages are exchanged.

Enhancements

The basic procedure is augmented with the follow-
ing features that further minimize host-device inter-
action. The interface allows direct inclusion of small
amounts of data in a TAR and an RAR (Type=010
and 011, respectively). Transaction style of interac-
tions, typical for many distributed applications, are
supported by a message type that integrates the func-
tions of TAR and RAR. A client issues a TAR/RAR
(Type=111) to send as well as to receive data. The
host memory pages are reused after data transmission
as buffers for receiving data. After data transmission,
this message is transformed and saved by the device
to act as an RAR waiting for data. Additional inter-
esting features supported are multicasting, timeouts
to return unused TARs and RARs, flexible masking
of packet interrupts, and buffer management policies
designed in part for large transfers of data and real-
time traffic such as packetized video. These features
are described in detail in [40].

Error Detection and Retransmissions

The interface allows a choice in locating error-control
and retransmission functions among device and host.
For the environment where transmission errors are
frequent, such as a packet radio network, these func-
tions could be located on the adapter. This would
eliminate data retransmission over the host bus and
memory but would also increase packet processing
load on the adapter.

The location is specified with an EC bit in the Flag
field of TAR or RAR. A TAR with the EC bit set
specifies that device should retain buffer descriptors
until acknowledgment arrives and should handle re-
transmissions. An RAR with the EC bit set specifies
that device should generate acknowledgment packets.
The details of acknowledgment and retransmission
procedures depend on the transport protocol used.
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Flow Control

Rate-based flow control, used in recent transport pro-
tocols, is difficult to implement in host software. The
typical inter-packet gap desired is too small for a task
switch and inserting idle software loop to generate
the gap is not only inefficient but is unable to gen-
erate precise gaps. The device has the knowledge of
demands of processors (processes) and the network
load and can implement flow-control in hardware,
making it ideal for performing flow control. A host
sets the flow control policy and adjusts inter-packet
gap requirements, which are conveyed to device, us-
ing UNDIP, in each TAR or RAR. The device ensures
gaps in packet transmission by either waiting for the
duration, multiplexing transmissions from two local
sources, or by giving up its access rights to link and
then waiting for the next chance.

The flow of TARs and RARs between host and
device is self-regulated. If the device runs out of
memory space for storing TARs and RARs, it returns
them to the host, marking them as unsuccessful. This
simple model of flow restriction is sufficient to build
allocation policies in device software that prevent un-
fairness to some applications.

4.5 Summary

In this chapter, we have described NAB architecture
for host interfaces. The key performance increasing
features of NAB architecture are

Video-RAM based memory organization The
memory organization achieves true concurrency
in processing packets with their transfer through
the adapter memory.

Packet Processing Pipeline Packet pro-
cessing pipeline reduces the total precessing time
by folding the cost of checksum and encryption
functions with the transfer of data. In order to
facillitate the pipelining, transport-level packets
should have end-to-end checksum following the
data portion.

Header prediction algorithm Header prediction
algorithm reduces processing time because of the
observed locality in network traffic. In conven-
tional interfaces, the improvement is not signif-
icant because header processing cost is a small
part of the total processing time. In NAB,
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the performance improves significantly because
NAB has already reduced other packet process-
ing costs leaving header processing as a potential
bottleneck.

Host-to-Adapter interface The host-to-adapter

interface treats small and large data transfers
differently, handling small transfers with a pro-
grammed I/O interface and large transfers with
“intelligent” DMA interface. The programmed
I/0 interface minimizes delay for small packets.
The DMA interface for large transfers minimizes
cache and system bus traffic. Transport proto-
col facilitates easy recognition of small packets
requiring low latency.

The adapter-to-host interface interrupts host on
a data segment boundary and not for each packet
transferred. For multi-packet transfers, this sig-
nificantly reduces interrupt processing overhead,
which is especially costly in multiprocessor sys-
tems, as one may need to trap data and code in
the cache to handle interrupts.

The authorization model for reception allows a
host to continue functioning even when being
bombarded by packets from one or more hosts.
This “firewall” function is essential for connect-
ing hosts to a high-speed network.




Chapter 5

Performance Analysis

5.1 Introduction

The two important cases to consider are throughput
for large amounts data transfer and response time for
a small amount of data transfer. The throughput is
measured as number of user-level data bytes trans-
ferred divided by the total time elapsed between user
call to kernel and kernel’s response indicating suc-
cessful transfer of data and acknowledgment from the
remote end. The response time for small transfers is
the total time elapsed between a user’s kernel call
and its response. Additional measure of interest is
the processing load on server imposed by communi-
cation protocols. With lower processing load per con-
nection, a server will accommodate more connections
without being a bottleneck.

The performance is based on the timing informa-

-tion obtained from the prototype NAB design, and

software processing time estimates are based on the
VMTP implementation in the V distributed system.
The prototype uses Motorola’s M68020 processor,
which is rated as a 2-MIPS processor. The perfor-
mance of prototype using a more powerful processor
is studied by running the NAB software on a chip-
level simulator for AMD’s Streamlined Instruction
Processor (AMD29000), which is rated as 17-MIPS
processor. A 100 megabits/sec FDDI ring is assumed
for estimating the network delay.

5.2 Delay for Short Packets

Delay is the key issue in considering the performance
for short packets. Figure 5.1 shows the estimated
request-response time for a VMTP message transac-
tion with no segment data, which results in a packet
of minimum length, i.e., 64 bytes plus a network
header.

The total delay includes the network latency, which
is the waiting time to access the network, the packet
transmission time, the bus transfer time, and the pro-
cessing times at sender and receiver for both a request
followed by a response packet. We assume the net-
work latency of 100 microseconds, reflecting the aver-
age round-trip time in a lightly loaded FDDI ring of
moderate size. The packet size is 64 bytes of VMTP
packet and network header is less than 16 bytes. The
network delay, ignoring the small propagation delay,
is the network latency plus the packet transmission
time, 100 + (80 * 8 /100) microseconds, which is
106.4 microseconds. The estimated NAB processing
time at the sender is 50 microseconds, based on ap-
proximately 150 instructions needed to process the
TAR, and to schedule the transmission. The esti-
mated NAB processing time at the receiver, which
includes the RAR matching time and the process-
ing of a received packet, is 50 microseconds, assum-
ing that an RAR is found. The packet processing
times at a receiver and a sender, estimated from the
actual CPU time observed for Send-Receive-Reply
IPC in the V operating system, are approximately
275 and 442 microseconds, respectively. These mea-
surements are for a request followed by a response
packet, both without a data segment between two
SUN 3 workstations communicating over the 10-MB
Ethernet. We measured these values with the help
of fine-grained timer (10 ps interval) available from
Peter Danzig [20]. Using these values, we find that
the total request-response time is approximately 1.14
milliseconds.

In Figure 5.1, we note that only about 12% of
the total request-response time is spent in network
adapters. The dominant factor is the host processing
of the request and the response packet (about 88%).
The network latency time and the NAB processing
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Figure 5.1: Response time for single short packet
transfer

are each about 5.6% of the total delay. Thus, further
optimization of the NAB architecture for this case
would yield marginal returns.

5.3 Throughput for Packet

Groups

Figure 5.2 shows the total request-response time for
transferring large amounts of data. To estimate this
delay, we first consider the delay for host memory-to-
memory data transfer. The request-response time is
obtained by adding to this delay the host processing
times at the sender and the receiver, plus the start-up
time at the NAB for beginning a packet group trans-
mission. Memory-to-memory transfer time is the net-
work transmission time for a packet group, with the
assumption that the packet processing required is
less than one packet transmission time on the net-
work. This is indeed the case in our design, once
a packet group transmission begins. We neglect the
small propagation delay of the medium, and we ne-
glect the network latency, which in this case is small
compared to the total data transmission time and
could be made smaller by sending multiple packets in
each access to the network. The packet size is 1024
bytes and the bus transfer rate is 320 megabit/sec.
Thus, the buffering latency for the first packet is 25.6
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Figure 5.2: Response time for large data transfers

microseconds. Finally, we conservatively estimate 50
microseconds as the start-up time at the NAB for
beginning the packet group transmission.

From Figure 5.2, we calculate that the (expected)
effective throughput for 16 kilobyte transfers is 44.3
megabit/sec. The memory-to-memory transfer rate is
94.5 megabit/sec. The buffering latency of the first
packet and the start-up time are, respectively, 0.8%
and 1.7% of the total request-response time for read-
ing 16 kilobytes. From Figures 5.1 and 5.2, we see
that in the NAB architecture the Request-Response
delay for both short and large data transfers, is dom-
inated by the host processing time.

In Figure 5.3, we show the impact that a NAB in-
terface will have on how much server capacity per
connection is utilized. The reduction in CPU cycles
effected by NAB is shown as a percentage of CPU
cycles currently required. The 16-KByte transfer of
data results in using only 10% of the CPU cycles cur-
rently measured as being devoted to that operation.
The current cycles used are obtained on a Sun 3/75
workstation with a program that measures CPU cy-
cles while repeatedly reading 16 KBytes. The cy-
cles needed with the NAB are measured on an VMP
processor equipped with hardware counters, counting
cache and other memory references.
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Figure 5.3: Server load with NAB relative to what is
imposed currently on a Sun 3/75 workstation.

5.4 Effect of Improving
Processor Technology

The performance would improve if a powerful CPU
is used both as the on-board processor and as a host
processor. The faster CPU reduces the processing
times at hosts and the start-up time for beginning the
packet group transmission. Moreover, the reduced
packet processing time at NAB, the cost of which
is hidden in our design in the packet transmission
time, allows one to use shorter packets with shorter
transmission times; the shorter packets reduce the
buffer latency time further decreasing the overall de-
lay. The future workstations are also expected to
use newer and faster system bus designs such as the
FutureBus [3], which can transfer data at 1.6 giga-
bit/sec. Taking all these factors in account we esti-
mated Request-Response delay for large data trans-
fers using 20-MIPS processors in Figure 5.4. The
packet size is 1024 bytes and the network speed is
100 megabit/sec. The processing times for processors
with greater than 2 MIPS power are derived from our
measurements on an MC68020, 2-MIPS machine, by
reducing these figures by a factor proportional to the
processor power relative to an MC68020.

In Figure 5.4, we note that the estimated response
time for 16 kilobyte transfers with a 20-MIPS CPU
and a faster bus is 1.48 ms. This means an effec-
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Figure 5.4: Response time for NAB using a 20-MIPS
Processor.

tive throughput of 88.6 megabit/sec. The memory-
to-memory transfer time rate is within 1% of the
transmission time over a network of capacity 100
megabits/sec.

A well-balanced NAB architecture would match
the NAB processor’s capacity to the network data
transfer rate, such that the time for processing a
packet equals the time of receiving or transmitting
a packet. In Figure 5.5, we show the expected
throughput as a function of processing power. We
assume that that the system remains well-balanced,
l.e., packet’s transmission time equals its process-
ing time at the adapter. The effective throughput
is calculated for transfer of 16 kilobytes using maxi-
mum packet size of 1 kilobyte. The request-response
throughput includes host processing time, which is
1575 microseconds at 2 MIPS, and which is propor-
tionally reduced for a faster processor. The packet
processing time within a packet group is estimated to
take 75 microseconds for a 2-MIPS processor, based
on approximately 150 instructions required for on
board processing at the receiver. The processing time
is reduced proportionally to obtain processing times
(and thus transmission time) as the processing power
increases. At 20-MIPS, as calculated from the the
memory-to-memory transfer rate is approximately 1
gigabits/sec. The actual system performance is likely
to be limited by the system bus capacity or the mem-
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Figure 5.5: Estimated throughput for NAB as a func-
tion of adapter processor’s power in MIPS.

ory bandwidth; both of these being assumed here to
be adequate.

We used a chip-level simulator of AMD’s 32 bit
RISC microprocessor in order to further investigate
how the performance scales with an increase in CPU
power. To run the NAB software on the simulator, we
had to change only one low-level routine of the NAB’s
simple operating kernel, which is nothing but a collec-
tion of low-level interrupt handlers and a prioritized
event scheduler. The observed throughput is shown
in Figure 5.6. The response time measured excludes
kernel overhead. The network connecting these sim-
ulated adapters is assumed to be a gigabit/sec link.
The response time obtained is compared with that
observed with that of the prototype using M68020,
and also with that obtained with current host inter-
faces on a Sun 3/75 machine running VM TP software
on the V system.

5.5 Cost and Performance
Analysis

In this section we study the performance benefits and
cost of key aspects of NAB, namely, packet processing
pipeline, memory organization, and on-board proces-
sor.
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Figure 5.6: Response times for the AMD 29000 NAB.

5.5.1 Packet Processing Pipeline

We observed the performance degradation that oc-
curs when on-board processor is forced to perform
each of the function performed otherwise in the
pipeline. In Figure 5.7, we show estimated response
time for three different configurations with NAB
Software running on the AMD processor simulator.
Three configurations differ by the functions added
to the NAB software. The first one performs nei-
ther checksumming nor encryption of data. The sec-
ond one performs checksumming in software. The
third one performs checksumming as well as encryp-
tion in software. As expected, response time is high-
est for the third configuration. The response time
for 16 KBytes of data transfer in the second and the
third configuration are, respectively, 4.4 times and
9.2 times that in the first one. Because checksum-
ming and encryption in software requires accessing
each data word, it is not surprising to find that re-
sponse times increases far more rapidly for the or-
ganizations that perform these functions in software.

In the prototype, the cost of the components for
the pipeline is about $150. This is about the 1/8
the total cost of components with MC68020 as the
onboard processor, and 1/15 the total cost of com-
ponents, if AMD29000 is used as the onboard pro-
cessor. The cost of other components are roughly
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Figure 5.7: Response times when checksumming and
encryption is not performed in the packet processing
pipeline.

$500 for memory-related components, and $400 for
AMD29000 processor. The cost for FDDI network
controller and transciever circuits is roughly $700 and
the remaining cost is for other supporting circuits
such as host bus interface and timer chip. To the
component cost, one should add the cost of PCB and
wiring of the logic required for building a pipeline. In

the prototype, the logic circuits for pipeline takes up .

about 2/5 of the overall board space.

In summary, with an additional cost that ranges
from 1/8-2/5 of the total cost one could obtain 10
times better performance by building the pipeline.

5.5.2 Memory Organization

We examined the response time for three different
memory organizations in order to evaluate the effec-
tiveness of using VRAM-based memory. The first one
is the normal NAB memory that uses VRAM com-
ponents. The other two uses fast SRAM components
with cycle time of 80 ns. One of these is a single-
port organization where access from processor, host
bus and network are arbitrated. The other one used
dual-port organization where access from host and
processor are made to one port and the network are
made to the other port. The performance differs in
these cases only because of the bus interference and
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memory organizations.

arbitration overhead due to simultaneous attempts
to access the memory. Figure 5.8 shows the response
times for these three memory configurations as the
size of data segment transferred increases. Response
times were measured by running the NAB software on
the AMD29000 simulator with the appropriate mem-
ory model. The reported measurements are averages
observed of 10 experiments, each of which performed
1000 data transfer operations without packet loss. As
expected, the VRAM-based memory has the lowest
response time.

When we consider the cost of components, VRAM-
based memory is even more attractive. Fast SRAM
components of a comparable size and speed are about
3 times more expensive than the VRAMs used in the
prototype. The board space and wiring costs for all
three are almost the same. Moreover, the memory is
roughly about 3/5 of the total cost of the board. A
minor disadvantage is the increased power consump-
tion when VRAM-based memory is used, which re-
flects in the increased cost of the power supply. A
VRAM IC used in the prototype consumes about 1.5
times the power consumption of the fast SRAM com-
ponent considered here.
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5.5.3 Onboard Intelligence

We quantify here performance benefits of having on-
board intelligence. We consider three different levels
of onboard intelligence. Note that the level numbers
are not to be confused with the layer of protocol it
implements. Intelligence Level 0 is the one that uses
a dumb adapter. An example is a sun 3/50 machine
with an Ethernet controller chip. In this system all
VMTP functions are implemented in host software.
Intelligence Level 1 is the one with the cut-through
adapter, described in Section 3.3.2. In this option,
the adapter does only checksumming and encryption
and has a host that performs the remaining functions
of VMTP. We assume the best case for this adapter.
The best case is that packet processing software used
at host processes packets as efficiently as the NAB
software does; The only difference is the added cost
of process switching and the interference in processor-
memory traffic due to packet transfers over the host
bus. Intelligence Level 2 is the intelligent adapter
performing checksumming, encryption and packeti-
zation for intermediate packets. We further consider
three variants of adapter architecture for the Level 2
adapter. In the first variant, the internal architecture
used is the NAB architecture. In the second variant,
NAB minus the block transfer protocol of the host
bus is used. The last variant is the intelligent adapter
with the conventional memory and bus organization.
All three variants run the NAB software with minor
changes.

The performance of the first system, Level 0
adapter, is measured on the V kernel running on a
Sun 3/50. The performance of other systems are esti-
mated with the the NAB software running on the sim-
ulator of NAB using AMD29000 processor. The per-
formance of Level 2 adapter with a conventional inter-
nal architecture is measured by changing the memory
model used for the simulator. A comparison of the
last three systems show how much performance im-
provement is the result of using NAB as an internal
architecture.

Figure 5.9 shows the performance and hardware
cost of these five systems. The first column of the
figure shows the expected response time of these sys-
tems for a 16-KByte write operation. The second
column shows the expected cost of the adapter used
in these system. The cost estimates are based on the
cost of components and the board space needed. The
costs are normalized by the cost of an Ethernet con-
troller chip and the circuitry needed to interface with

the chip.

The type of onboard intelligence selected should
depend on the class of host machine used. Host
machines on a network can be categorized in three
classes: network terminals, workstations, and power-
ful servers. The choice is clear-cut for low cost net-
work terminals as well as powerful server machines.
In a network terminal, the relative cost of adapter
is significant and since the performance is not lim-
ited by the adapter, a dumb adapter (Level 0) is
the appropriate choice. For a server machine, such
as a Cray machine or Alliant series multiprocessors,
the additional cost of general-purpose processor on
the adapter is a fraction of the total system cost.
For servers, there are multiple clients waiting to get
service. Because of this, minimizing the wastage of
servers’ critical resources should be a high priority.
Thus, the relative cost and high performance desired
both argue in favor of a NAB-like adapter.

In workstations, the level of onboard intelligence
to be used depends on a number of factors. Pro-
ponents of dumb (and simple) interfaces argue that
because a workstation is a single user environment,
the host processor is frequently available to perform
communication tasks without significantly lowering
the overall performance. Moreover, it is argued that
a workstation is generally cheap enough to make net-
work adapter cost significant. For example, currently
a low-cost workstation from Sun costs $8,000 whereas
the FDDI interface costs $3,000-85,000. These argu-
ments seem to favor using a dumb adapter (Level 0).

But, the future trend in workstation technology fa-
vors using intelligent adapters even for workstations.
Microprocessor technology is pushing towards lower
instruction cycle times, making host bus and memory
critical resources. Moreover, the demand for desk-top
computing power and particularly high quality dis-
play continues to increase the price of a workstation.
In contrast, the price of adapter with an onboard gen-
eral processor remains more static, since the onboard
processor has to be only powerful enough to keep up
with the network’s data rate. And, upgrading net-
work technology to higher rates proceeds at a slower
pace, because it entails upgrading all the connecting
host interfaces at a time. We found that a NAB built
with M68020 processor would be adequate (Figure
5.6) for a 100 Mbps link. Because the adapter pro-
cessor need not be changed or redesigned unless net-
work is, one can also take advantage of rapid decline
in prices of old processors that occurs when faster




5.6. A SUMMARY OF RESULTS

Onboard Response Hardware
Intelligence Time Cost
of Adapter for 16-KByte | of Adapter
Writes (ms) Used
Level 0 121.5 1
Level 1 8.1 3
Level 2 (Var. I) 2.9 14
Level 2 (Var. II) 5.5 12.3
Level 2 (Var. III) 110 8.5

Figure 5.9: Response times and relative costs of dif-
ferent adapter architectures.

processors are offered. The list price of a DECsta-
tion 3100 with color monitor (rated at 10 MIPS) is
in the $50,000 range. For this workstation, the ad-
ditional dollars (est. $500) required to build a NAB
like interface as opposed to the cut-through adapter
is about one percent of the total cost. Thus, all of
the future trends in workstation technology seems to
favor onboard intelligence. But, for low-cost work-
stations with low performance (2-5 MIPS region), an
adapter peforming only checksumming and encryp-
tion functions (Level 1) could be a good choice.

5.6 A Summary of Results

The expected performance of NAB prototype shows
a large increase in performance compared to current
host interfaces. For instance, the effective through-
put of MC68000 NAB for a transfer of 16 KBytes
is 45 Mbps at the user-level. Multiple connections
through the NAB would have the aggregate through-
put of no less than 90 Mbps. The expected through-
put for AMD29000 NAB is 200 Mbps at user level
and 450 Mbps aggregate throughput. The through-
put increased tenfold to hundredfold as compared to
the best throughput currently available on hosts im-
plementing VMTP.

The expected response time for small transfer also
shows improvement. The request-response time for
small transfers would be 1.14 ms for MC68000 NAB.

One of the stated goals for having onboard intelli-
gence was to save the host bus cycles used for com-
munications. The goal is indeed met. As shown in
Figure 5.3, the NAB brings the host bus capacity used
for communication to 10%-70% of that used with a
dumb adapter.

41

The performance analysis of having onboard intel-
ligence, shown in Figure 5.9, indicates that the NAB
adapter has the lowest response time compared to a
dumb adapter, an intelligent adapter with a conven-
tional architecture, and a cut-through adapter. The
cost of hardware, which is typically a small part of
the total cost of a host, is the highest for the NAB
adapter. The NAB architecture seems ideal for an
adapter for a server machine because in this environ-
ment the increase in performance and the saving in
host bus cycles typically outweigh the cost consider-
ation.

We also quantified performance improvements ob-
tained with the pipelined processing (Section 5.5.1)
and with the Video RAM based memory organization
(Section 5.5.2).



Chapter 6

Related Works

6.1 Introduction

The interfacing of hosts to networks is an important
research issue that was not appreciated in the early
days of networking. At that time, the focus was
on studying the problems of sharing communication
links and switches. There were two major reasons for
this lack of interest. The communication links were
of relatively low speed and the major network-wide
applications of that age, namely, electronic mail and
remote-login, did not demand high throughput. Two
subsequent developments have contributed the most
to the current focus on the host interfaces.

The development of distributed systems demanded
high performance at user-level. Distributed operat-
ing systems made geographical distance and machine
identities transparent to users. These operating sys-
tems, designed from scratch, made communication
services the most fundamental aspect of their struc-
tures. With this development, the need to improve
performance became noticeable. Some notable exam-
ple of distributed operating systems are DEMOS [2],
Thoth [5], Accent [52], V [8], and Locus [50] operating
systems.

Multi-megabit local area networks such as Ethernet
and developments in optical fiber technology made
raw bandwidth cheap and plentiful. With this came
the realization that the performance available to users
was quite below what a network offers and what a
user wants. This fact was observed in a number of
studies of network traffic and distributed systems [43,
41, 55].

6.2 DBetter Software

Past efforts made for improving user-level perfor-
mance may be categorized by the relative empha-

sis placed on either the software or the hardware
changes. The ones that relied solely on software
changes, leaving the underlying hardware unchanged,
are discussed first. The others are discussed in the
following section.

One of the recent, successful effort that relied only
on software improvements is by Van Jacobson and
Mike Karel [35, 36, 37]. They made three major
changes in the TCP/IP implementation on BSD 4.2
Unix, improving its performance. The first and per-
haps the most important change made was to remove
redundant, hidden copying of network-bound data in
the operating system. The second change they made
was to improve the interface between the kernel and
the device driver to handle data passed between them
in larger chunks. The third innovative change made
was to change the header processing algorithm. It
made use of a hint produced by the examination of
the last received packet. With the changes, through-
put for transferring 32 Kbytes of data over a 10-
MB Ethernet increased from 2 Mbits/s to nearly 8.4
Mbits/s.

Another interesting effort solely relying on software
changes was reported by Carter and Zwanaepoel [4].
It managed to increase the VMTP throughput from
4.5 Mbits/s to nearly 8.5 Mbits/s by making use of
locality in network traffic to eliminate data movement
of large packets. The basic observation made by them
was that the data contained in the received packet
frequently goes to the next location in the host mem-
ory. So by default, the data received was transferred
directly to the memory location predicted by the ex-
amination of the last packet received. Corrective ac-
tions need to be taken if the packet did not belong
there, a fact that is discovered on the processing of
its header. The procedure avoids the additional data
move but does so at a considerable cost required for
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correcting prediction failures.

6.3 Hardware for

Protocols

Support

A first attempt at building a full transport protocol
in a VLSI was made at Mitre Corporation [46]). They
developed a single chip implementing TCP/IP stan-
dard. There were two major problems with this chip.
It was slow and it handled at most two connections.
Both these problems were caused by its internal ar-
chitecture. The architecture used a standard micro-
processor CPU unit and on-chip microcode store that
contained TCP/IP program.

The second interesting effort is Greg Chesson’s
Protocol Engine project [13], currently in the devel-
opment phase. His approach is based on a lightweight
transport protocol called XTP [14], developed specifi-
cally to make its hardware implementation easy. Cur-
rently, they have an architectural design of the PE
ready and a software implementation/specification
for XTP. The reported details about the design in-
dicates that the PE is a specialized processor to be
implemented in four VLSI chips. One unusual fea-
ture of the design is that it plans to use an additional
program address register to effect fast context switch-
ing between software modules implementing trans-
mit and receive procedures. Another special feature
planned is the hardware to assist in searching a con-
nection control block from the destination address
of a packet. Other transport-level functions such as
packet retransmissions, error control, and flow con-
trol are planned to be performed with a microcode.

Researchers from NTT Laboratories, Tokyo, have
reported the design of a VLSI chip for X.25 layer
2 and 3 protocols [32]. The VLSI employs parallel
processing between layers 2 and 3 of both the re-
ceive and the transmit side. It also provides complete
hardware-handling of data transfer control and buffer
management functions, and directly executes high-
level protocol description language for flexible proto-
col implementations. The performance of the VLSI
chip was estimated to handle packets at data rates
up to 50 Mbits/s. The prototype built with CMOS
technology has about 140K transistor-logic circuits,
about 168 Kbits of ROM and 27 Kbits of RAM inte-
grated on the chip. The VLSI chip runs at maximum
clock rate of 32 MHz and is housed in 208 pin grid
array package.
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Krishnakumar, Krishnamurthy and Sabnani from
AT&T Bell Laboratories [42] have proposed a differ-
ent approach in building a protocol VLSI. They pro-
posed modeling the core of a protocol formally with a
collection of Finite State Machines (FSMs) [54] com-
municating with one another through synchronous
message exchange. This model captures coordina-
tion between peer entities. Low-level details such as
message formats and timer operations are also spec-
ified formally. The overall architecture consists of a
major unit that performs core functions modeled as
communicating FSMs, and a number of satellite units
such as the message parser, message assembler, and
the memory controller. The VLSI design is gener-
ated automatically from a formal specification of a
protocol. Currently, a prototype is being built, that
is expected to show at least as much throughput as
obtained with the X.25 VLSI from NTT.

With the exception of A. Spector’s PhD Thesis
[67], no efforts have been made for hardware de-
signed specifically to reduce latency for exchanging
small amounts of data. A. Spector modified an ALTO
machine, developed at XEROX’s Palo Alto Research
Center in the late seventies to achieve low latency
communications over Ethernet. He added micro-code
to the machine to handle time-critical portions in
send and receive routines. The major gain seemed
to occur by busy waiting on a process expecting a
response from a remote machine.

The Message-Driven Processor (MDP), designed
by William Daley, has an architecture adapted for ef-
ficient message communications in an object-oriented
system [19]. A message is considered to be in the
form of a long instruction for the processor which can
be executed immediately. The architecture supports
message handling with an on-chip memory with 3 in-
ternal access ports and a hardware support for mes-
sage queues. Although the design is directed to an
object-oriented system, it could also handle a general-
purpose transport protocol.

6.4 Host-Network Device
Interactions

David Clark from M.I.T. has proposed a host-network
interface architecture [15] that resembles in many
ways to the host-adapter interface of the NAB. In
both works, developed concurrently and indepen-
dently, the basic premise is the same. Clark also
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argues for reducing the load on the host by trans-
ferring checksumming, packetization and buffer man-
agement functions to an intelligent device. Their
proposal does not discuss device architectures nec-
essary for better performance and thus in itself is
not sufficient to guarantee high performance. Two
other major differences exist as compared to our host-
network interface. They envisage the model of inter-
action to be a virtual circuit; whereas, ours is a sim-
ple request-response model that would provide low
latency for single packet exchange. The other dif-
ference is the proposed global naming for messages
transferred across the interface. It would be, in my
opinion, difficult to manage global name space of mes-
sages leading to a high latency for a single exchange
of packets. For this reason we have not named mes-
sages explicitly. One of the innovative aspects of
their model was how to handle buffer management
functions. Their scheme is quite general and would
work well with real-time traffic, such as the packe-
tized video. Our buffer management scheme is easier
to implement and is as flexible. The NAB architec-
ture provides additional features such as secure com-
munications and traffic overload-protection not pro-
vided in their proposal.

6.5 Optimized Transport
Protocols

Universal Receiver Protocol [27], developed at Bell
Laboratories for the Datakit network, is one of the
early attempts at developing a lightweight transport
protocol. They noticed that the processing bottle-
neck is at the receiving end, and thus concentrated on
simplifying the URP receiver’s state machine. It uses
simple packet types and address fields. The packet
size is kept fairly small in order to reduce the store-
and-forward component of the delay at intermediate
switching nodes. Although useful for the environ-
ment it was developed, namely centralized-hub type
networks, URP seems not flexible enough to operate
over subnets with widely different characteristics.
Another example of an light-weight protocol is
XTP, proposed by Greg Chesson [14]. The focus here
was on simplifying mechanisms such that the entire
protocol could be implemented on a VLSI chip. Al-
though the design is somewhat fluid at the moment,
the available details suggest that it has focused on
simplifying addressing and error-control mechanisms.

Although the protocol has more functionality than
Sandy Fraser’s URP protocol, on which it is based,
it still lacks standard transport level features such
as support for encryption, multicasting, and process
migration. Its error control scheme is a variation on
the sliding window control scheme of TCP. It allows
only one run of missing packets in the sequence of
the received packets, before it would start discarding
packets and ask for retransmission beginning with the
missing pieces. Because of this variation, the perfor-
mance is reduced in subnetworks that may reorder
packets or split virtual circuit traffic on alternative
routes to balance the load on gateways.

The NETBLT is a transport protocol proposed by
D. Clark et al. [16] to transfer bulk data. Main fea-
ture that was expected to improve throughput was
the grouping of packets sent. In NETBLT, the sender
sends a large block of data as a group of packets with-
out getting an acknowledgment from the receiver. In
order to not overrun the receiver, the sending of a
packet group is controlled by introducing gaps in
transmitted packets. The rate is negotiated at the
opening of a connection and adjusted periodically
through feedback from the receiver. NETBLT im-
plemented properly could provide high throughput,
but it provides little support for transferring small
amounts of data with low latency.

6.6 Current Products

Among the Ethernet devices and other network in-
terfaces commercially available, one finds three basic
models. We refer to these as the memory model, the
DMA model and the processor model. In the mem-
ory model, a host processor reads packets from, and
writes packets, to the network adapter as though it
is simply a portion of memory, except for performing
some operation to restart network packet transmis-
sion and reception after every packet. In the DMA
model, the board accepts descriptors of packet buffers
(possibly as scattered fragments of memory) and per-
forms the packet transfer. In the processor model,
the board copies data to and from the host memory
plus provides some degree of processing capacity on-
board. The VMP interface follows the memory model
for small amounts of data and the processor model for
large amounts of data.

Several commercial products use the memory
model. The 3C400 [1] is an early example, provid-
ing only one transmit buffer and two receive buffers.
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A more recent and competitive design, the SUN Mi-
crosystem’s Ethernet interface [59], provides 128 kilo-
bytes of on-board memory plus a network interface
chip providing on-board scatter-gather DMA between
the network and the on-board memory. One advan-
tage cited for this design is that it allows direct DMA
from a disk (for example) to the network interface,
providing one bus transfer for data. However, this
design assumes no software checksum and no encryp-
tion. Inclusion of these features would incur addi-
tional memory references. Note also, either all file
system buffers reside on the network interface board
or else data must be transferred to main memory in
any case. With the feasibility of dedicating multi-
megabytes of memory to disk cache on a shared file
server, the benefits of direct transfers to the network
interface seem limited.

Several commercial products use the DMA model,
including the DEC board [21]. This design forces
a host processor to fully prepare a network packet
for transmission in host memory, incurring at least
2 extra memory references and typically 4 if encryp-
tion is used.! Besides the copying cost, these inter-
faces interrupt on every packet transmission and re-
ception, placing a significant overhead on the host
processor(s). They also do not provide any “firewall”
protection between the host and the network. In gen-
eral, DMA network interfaces do not appear to have
any advantages over the memory model.

A number of network interfaces in the processor
model are available as commercial products. Exam-
ples include the Excelan 1020 [23] and the CMC ENP-
100 [18]. In our experience, these interfaces are slower
than commercial interfaces in the other models be-
cause of inadequate memory bandwidth on the board
to serve the network transfers, hosts transfers and on-
board processor accesses simultaneously. To be fair,
these products are aimed at providing network access
for existing operating systems and architectures with
minimal modification to the operating system. For
instance, the CMC ENP board comes with a TCP
implementation that makes it appear similar to a ter-
minal multiplexor. :

1 The author is not aware of any software implementation
that performs the copy and checksum simultaneously. In the
absence of this optimization, an additional memory reference
is required.




Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we addressed the question about
how much transport protocol processing should an
adapter do. We justified, qualitatively and quantita-
tively, the following as the best choice in this regard.

1. Checksumming and Encryption: We pro-
pose that the adapter perform end-to-end check-
sum and encryption/decryption functions. If the
adapter checksums and encrypts data, then the
data movement over the host bus and memory is
reduced to one per data word. Results of mea-
surements discussed in Section 5.3 show that 16
Kbytes of data transfer had bus utilization of
70% as compared to that when host performed
checksumming and encryption functions. Using
the bus efficiently for communication traffic has
many benefits. Since data is copied only once,
the processing time per packet is reduced. Since
a host processor has to wait less often to ac-
cess bus and memory, the system’s overall per-
formance increases. Additionally, one can ac-
commodate a larger number of processors in a
bus-based multiprocessor system.

2. Packet Header Processing: We propose that
the adapter perform the header processing for
intermediate! packets. If the adapter does
packet processing, it will generate fewer host in-
terrupts. and it can overlap header processing
with the transfer of data over the host bus. Re-
sults of measurements, discussed in Section 5.5.3,
show that such an adapter has 2.5 ms response
time for 16 Kbyte write operation, which is three

1 We define an intermediate packet as one that does
not, explicitly or implicitly, establish or close a transport-level
connection.
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times faster than if the adapter does not do
header processing but does checksumming and
encryption. Furthermore, with onboard intelli-
gence (and the buffer reservation model), one
does not need physical or virtual copy of data
pages between kernel and users’ address spaces
(Section 3.2.1).

Current intelligent adapters are slow. This ob-
servation motivated us to investigate techniques for
improving the performance of an intelligent adapter.
We identified three general techniques. The first and
the most effective of them is the pipelined processing
of packets. The other two techniques are the predic-
tive processing of headers and the optimization for
control packets.

1. Pipelined Processing: Pipelined processing of
a packet reduces memory accessed to the adapter
memory, a critical resource at the intelligent
adapter. The references are reduced because
checksumming and encryption of data is per-
formed while a packet is transmitted or received.

2. Predictive Processing: Predicting headers of
packets to be received reduces packet processing
times. One compares incoming packet header to
predicted one(s) instead of doing the costly con-
ditional processing in order to locate connection
records and to validate packets. We found that
only few predicted entries need to be stored to
achieve high success rates for predictions.

3. Optimization for Control Packets: Low la-
tency is important for packets carrying control
information. Such packets are identified and ex-
pedited by the adapter using the programmed
I/O model directly to the user.




7.1. CONCLUSIONS

As a part of our thesis research, we proposed an
integrated solution for high performance communi-
cation based on the principles identified above. This
solution incorporates several novel concepts in the
host/adapter interface, the adapter’s internal archi-
tecture, and the communications protocol architec-
ture. We designed and partially implemented a pro-
totype based on the architecture as a network adapter
for the VMP system, a multiprocessor designed at
Stanford University. Although the design is appli-
cable to other multiprocessors and network proto-
cols, the conventional independence between network
adapter design, computer I/O system design, and
transport protocol design seems incompatible with
achieving the performance levels of interest here. In
the following we summarize some of the important
aspects of the design.

Host/Adapter Interface: The host-to-adapter in-
terface treats small and large data transfers dif-
ferently, handling the small transfers using a pro-
grammed I/O interface and the large data trans-
fers with “intelligent” DMA. The programmed
I/0 interface minimizes delay for small packets.
The DMA interface for large transfers minimizes
cache and system bus traffic.

The adapter-to-host interface interrupts host on
a data segment boundary and not for each packet
transferred. For multi-packet transfers, this sig-
nificantly reduces interrupt processing overhead,
which is especially costly in multiprocessor sys-
tems, as one may need to trap data and code in
the cache to handle interrupts.

The authorization model for reception allows a
host to continue functioning even when being
bombarded by packets from one or more hosts.
This “firewall” function is essential for connect-
ing hosts to a high-speed network.

Network Adapter Internal Architecture: On-
board processing of checksumming, encryption,
and packetization of data minimizes bus trans-
fers to 1 per unit of transfer, namely a 32-bit
word. This also avoids having to transfer data
to the processor cache, which may improve the
cache performance.

A packet pipeline, executing key functions such
as checksumming and encryption, is used to in-
crease throughput, particularly for large data
transfers. The pipeline latency for short packet

47

transfers is reduced by using few stages and a
small unit for data transfers between the stages.

Contention-less memory accessing is provided by
a novel memory architecture based on Video
RAMs which reduces buffering latency and in-
creases the packet processing rate. It allows pro-
cessing of a packet by the on-board processor to
proceed in parallel with the transfer of subse-
quent packets from the host to the buffer mem-
ory and from the network to the buffer memory.

Block copier hardware is used to transfer data
at full blast between host memory and the
adapter memory, thus reducing bus occupancy
and buffering latency.

The header processing algorithm utilizes the
hints produced by the examination of previously
received packets to reduce the packet process-
ing time at a receiver. Qur traffic measurements
show that the hints succeed for a large fraction
of the received packets. We investigated three
algorithms for producing hints. Of these three,
the one that predicted responses based on outgo-
ing requests produced the best success ratio for
a given size of cache containing hints.

Communication Protocol Architecture:
VMTP is designed specifically to provide high
performance communications. Many features of
VMTP are exploited in this design. The packet
group concept is exploited by the host/adapter
interface to minimize host interrupts. The
packet group concept also simplifies the packet
formation for packets in the same group.  The
NAB accepts a packet prototype of the first
packet and forms headers of subsequent pack-
ets by making simple changes in it. Request-
response model is also used to provide hints for
reducing packet processing time at a receiver.

The VMTP protocol has two types of packets:
fixed size packets containing few words of user-
level data and variable size packets containing a
large amount of data. This reflects the dual-size
distribution observed in network traffic measure-
ments. This feature of VMTP is exploited by the
host/adapter interface to efficiently handle both
small and large data transfers.

The VMTP checksum, which follows the data
field, facilitates checksumming in hardware as
the packet is transferred over the network, hid-
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ing its cost in a copying operation of transferring
the data to the network.

We estimated the performance of the prototype
based on timing information from the prototype. The
estimated performance is over 45 Mbits/s through-
put and 1.2 ms latency, which is at least an order of
magnitude higher throughput and 33% less latency
than that available from software implementations
of VMTP on a Sun 3/75 workstation. Both Sun
3/75 and the prototype uses the same microproces-
sor, MC68020. Thus, the improvement is seen as the
result of improved architecture.

The performance was found to be limited by the
processing time of packet headers. The bottleneck
was removed in a model of NAB using AMD29000
microprocessor, a 17-MIPS machine. In this set
of experiments, the NAB software was run on the
chip-level simulator of AMD29000 processor with
the parameters that accurately model the NAB
adapter’s memory. As expected, the measured per-
formance confirmed that the NAB architecture scales
up with the increase in processor power. The mea-
sured throughput was about two orders of magnitude
higher than that of current software implementations
of VMTP. Thus, we supported the claim we made ear-

, lier that the current general-purpose microprocessors
have the power necessary to provide better perfor-
mance with the integrated changes in system design.

One of the contribution of this work is to clear the
myths in designing a transport protocol. As corollar-
ies to this work, we conclude that

1. High-Performance does mnot require changing
state machines of current transport protocols

2. High-Performance does not require that state
machines of current transport protocol be imple-
mented in hardware.

3. Streamlining of protocols is needed to facilitate
the speed-up by using the pipelined processing,
the predictive processing, and the optimization
for control packets.

7.2 Future Work

Future work is necessary to address three issues raised
by this thesis work.

Fairness among Users of High-Speed Transport
If you have a host interface that gives a sin-
gle user connection the capability to use the
full bandwidth of the network link, then it is
likely that the user may use it to wreak havoc
on the network. Clearly, we need to design
transport-level mechanisms that guarantees fair-
ness at transport-level among users sharing the
network. Currently we don’t even have the capa-
bility to indicate user demands of network capac-
ity. Some fairness is ensured currently in local
area networks on per node basis. This is imple-
mented at the link-level, e.g., back-off algorithm
in Ethernet and TRT and THT timers in a To-
ken Ring. Additional mechanisms for fair alloca-
tion of resources at a end-user node need to be
developed. Further explorations are necessary
also to understand their interactions to the link-
level mechanisms, gateway/switch control poli-
cies and the flow and error contro! policies of
transport protocol.

Real Issues in Transport Protocol Design

As observed earlier, one needs to make few sim-
ple changes to current transport protocols to get
high performance. This raises a question about
what the real issues are in the future design of
transport protocol. Much of the work in the past
was directed to designing protocols to get high
throughput or low latency [16, 27, 14, 6]. Now,
it seems, the focus should turn to other issues.
Some open questions in this regard are how to
provide guarantees on service quality, how to op-
erate over multiple, possibly heterogeneous net-
works, and how to get around the inherent delay,
limited by the speed of light, seen in a wide-area
network.

Data Marshalling Transformations of data repre-
sentations are necessary for communications be-
tween heterogeneous computer systems. Exam-
ples of such transformations include reversal of
byte-order, change of floating-point formats, etc.
Such transformations add significantly to the
cost of communicating. Even a simple opera-
tion like reversal of byte-order of words takes
many instructions per word. Other transforma-
tions such as changing formats of a real num-
ber are more costly. Moreover, with wide-spread
networking, we foresee that data transformations




are going to be increasingly frequent. Perform-
ing these functions in host software is slow and
will offset improvements at transport-level ob-
tained with the NAB architecture. Thus, we see
data marshalling as a next group of functions
that needs hardware support and if appropriate
changes in protocol architecture.

Performing these functions in the packet process-
ing pipeline is an obvious solution. To do so, one
needs to design presentation protocols that sup-
port hardware implementation. There are two
general classes of presentation protocols: explicit
and implicit. In an explicit presentation proto-
col, exemplified by X.409 ISO Abstract Syntax
Notation [34], one appends a type field to each
data field carried in a packet. Implicit presen-
tation protocols, exemplified by the XDR used
within NFS and SunRPC [58], assume that re-
mote application modules have information re-
quired to perform these functions and thus avoid
carrying type information in a packet. Explicit
presentation protocol provides a natural founda-
tion for building data transformation hardware
as a part of the packet processing pipeline. But,
even an implicit protocol like the XDR, protocol
provides a way to make it behave like an explicit
presentation protocol. Let one assign a num-
ber to each data type defined in XDR and add
that as a discriminant to a universal type ap-
pended to the front of each encoded data type
field. This enhanced protocol looks much like an
explicit presentation protocol and can be used
with the packet processing pipeline. The pipeline
need not perform all of the transformations spec-
ified in the protocol. One could build efficient
hardware for common data transformations and
leave the rest to be performed by host or net-
work adapter software. Further explorations and
in-depth study are necesary to determine the ef-
fectiveness of this approach.
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